Linear Collider Physics Resource Book for Snowmass 2001

American Linear Collider Working Group

BNL-52627, CLNS 01/1729, FERMILAB-Pub-01/058-E, LBNL-47813, SLAC-R-570, UCRL-ID-143810-DR

LC-REV-2001-074-US

June 2001

This document, and the material and data contained therein, was developed under sponsorship of the United States Government. Neither the United States nor the Department of Energy, nor the Leland Stanford Junior University, nor their employees, nor their respective contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any liability of responsibility for accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use will not infringe privately owned rights. Mention of any product, its manufacturer, or suppliers shall not, nor is intended to imply approval, disapproval, or fitness for any particular use. A royalty-free, nonexclusive right to use and disseminate same for any purpose whatsoever, is expressly reserved to the United States and the University.

Cover: Events of $e^+e^- \to Z^0 h^0$, simulated with the Large linear collider detector described in Chapter 15. Front cover: $h^0 \to \tau^+ \tau^-$, $Z^0 \to b\overline{b}$. Back cover: $h^0 \to b\overline{b}$, $Z^0 \to \mu^+ \mu^-$.

Typset in LAT_FX by S. Jensen.

Prepared for the Department of Energy under contract number DE-AC03-76SF00515 by Stanford Linear Accelerator Center, Stanford University, Stanford, California. Printed in the United State of America. Available from National Technical Information Services, US Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

American Linear Collider Working Group

T. Abe⁵², N. Arkani-Hamed²⁹, D. Asner³⁰, H. Baer²², J. Bagger²⁶, C. Balazs²³, C. Baltay⁵⁹, T. Barker¹⁶, T. Barklow⁵², J. Barron¹⁶, U. Baur³⁸, R. Beach³⁰ R. Bellwied⁵⁷, I. Bigi⁴¹, C. Blöchinger⁵⁸, S. Boege⁴⁷, T. Bolton²⁷, G. Bower⁵², J. Brau⁴², M. Breidenbach⁵², S. J. Brodsky⁵², D. Burke⁵², P. Burrows⁴³, J. N. Butler²¹, D. Chakraborty⁴⁰, H. C. Cheng¹⁴, M. Chertok⁶, S. Y. Choi¹⁵ D. Cinabro⁵⁷, G. Corcella⁵⁰, R. K. Cordero¹⁶, N. Danielson¹⁶, H. Davoudiasl⁵² S. Dawson⁴, A. Denner⁴⁴, P. Derwent²¹, M. A. Diaz¹², M. Dima¹⁶, S. Dittmaier¹⁸, M. Dixit¹¹, L. Dixon⁵², B. Dobrescu⁵⁹, M. A. Doncheski⁴⁶, M. Duckwitz¹⁶, J. Dunn¹⁶, J. Early³⁰, J. Erler⁴⁵, J. L. Feng³⁵, C. Ferretti³⁷, H. E. Fisk²¹, H. Fraas⁵⁸, A. Freitas¹⁸, R. Frey⁴², D. Gerdes³⁷, L. Gibbons¹⁷, R. Godbole²⁴, S. Godfrey¹¹, E. Goodman¹⁶, S. Gopalakrishna²⁹, N. Graf⁵², P. D. Grannis³⁹, J. Gronberg³⁰, J. Gunion⁶, H. E. Haber⁹, T. Han⁵⁵, R. Hawkings¹³, C. Hearty³, S. Heinemeyer⁴. S. S. Hertzbach³⁴, C. Heusch⁹, J. Hewett⁵², K. Hikasa⁵⁴, G. Hiller⁵², A. Hoang³⁶, R. Hollebeek⁴⁵, M. Iwasaki⁴², R. Jacobsen²⁹, J. Jaros⁵², A. Juste²¹, J. Kadyk²⁹, J. Kalinowski⁵⁷, P. Kalyniak¹¹, T. Kamon⁵³, D. Karlen¹¹, L. Keller⁵² D. Koltick⁴⁸ G. Kribs⁵⁵, A. Kronfeld²¹, A. Leike³², H. E. Logan²¹, J. Lykken²¹, C. Macesanu⁵⁰, S. Magill¹, W. Marciano⁴, T. W. Markiewicz⁵², S. Martin⁴⁰, T. Maruyama⁵², K. Matchev¹³, K. Moenig¹⁹, H. E. Montgomery²¹, G. Moortgat-Pick¹⁸, G. Moreau³³, S. Mrenna⁶, B. Murakami⁶, H. Murayama²⁹, U. Nauenberg¹⁶, H. Neal⁵⁹, B. Newman¹⁶, M. Nojiri²⁸, L. H. Orr⁵⁰, F. Paige⁴, A. Para²¹, S. Pathak⁴⁵. M. E. Peskin⁵², T. Plehn⁵⁵, F. Porter¹⁰, C. Potter⁴², C. Prescott⁵², D. Rainwater²¹, T. Raubenheimer $^{52},$ J. Repond¹, K. Riles $^{37},$ T. Rizzo $^{52},$ M. Ronan $^{29},$ L. Rosenberg³⁵, J. Rosner¹⁴, M. Roth³¹, P. Rowson⁵², B. Schumm⁹, L. Seppala³⁰, A. Seryi⁵², J. Siegrist²⁹, N. Sinev⁴², K. Skulina³⁰, K. L. Sterner⁴⁵, I. Stewart⁸, S. Su¹⁰, X. Tata²³, V. Telnov⁵, T. Teubner⁴⁹, S. Tkaczyk²¹, A. S. Turcot⁴, K. van Bibber³⁰, R. van Kooten²⁵, R. Vega⁵¹, D. Wackeroth⁵⁰, D. Wagner¹⁶ A. Waite⁵², W. Walkowiak⁹, G. Weiglein¹³, J. D. Wells⁶, W. Wester, III²¹, B. Williams¹⁶, G. Wilson¹³, R. Wilson², D. Winn²⁰, M. Woods⁵², J. Wudka⁷, O. Yakovlev³⁷, H. Yamamoto²³ H. J. Yang³⁷

¹ Argonne National Laboratory, Argonne, IL 60439 ² Universitat Autonoma de Barcelona, E-08193 Bellaterra, Spain ³ University of British Columbia, Vancouver, BC V6T 1Z1, Canada ⁴ Brookhaven National Laboratory, Upton, NY 11973 ⁵ Budker INP, RU-630090 Novosibirsk, Russia ⁶ University of California, Davis, CA 95616 ⁷ University of California, Riverside, CA 92521 ⁸ University of California at San Diego, La Jolla, CA 92093 ⁹ University of California, Santa Cruz, CA 95064 ¹⁰ California Institute of Technology, Pasadena, CA 91125 ¹¹ Carleton University, Ottawa, ON K1S 5B6, Canada ¹² Universidad Catolica de Chile, Chile ¹³ CERN, CH-1211 Geneva 23, Switzerland ¹⁴ University of Chicago, Chicago, IL 60637 ¹⁵ Chonbuk National University, Chonju 561-756, Korea ¹⁶ University of Colorado, Boulder, CO 80309 ¹⁷ Cornell University, Ithaca, NY 14853 ¹⁸ DESY, D-22063 Hamburg, Germany ¹⁹ DESY, D-15738 Zeuthen, Germany ²⁰ Fairfield University, Fairfield, CT 06430 ²¹ Fermi National Accelerator Laboratory, Batavia, IL 60510 ²² Florida State University, Tallahassee, FL 32306 ²³ University of Hawaii, Honolulu, HI 96822 ²⁴ Indian Institute of Science, Bangalore, 560 012, India ²⁵ Indiana University, Bloomington, IN 47405 ²⁶ Johns Hopkins University, Baltimore, MD 21218 ²⁷ Kansas State University, Manhattan, KS 66506 ²⁸ Kyoto University, Kyoto 606, Japan ²⁹ Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ³⁰ Lawrence Livermore National Laboratory, Livermore, CA 94551 ³¹ Universität Leipzig, D-04109 Leipzig, Germany ³² Ludwigs-Maximilians-Universität, München, Germany ^{32a} Manchester University, Manchester M13 9PL, UK ³³ Centre de Physique Theorique, CNRS, F-13288 Marseille, France ³⁴ University of Massachusetts, Amherst, MA 01003 ³⁵ Massachussetts Institute of Technology, Cambridge, MA 02139 Max-Planck-Institut für Physik, München, Germany 36³⁷ University of Michigan, Ann Arbor MI 48109 ³⁸ State University of New York, Buffalo, NY 14260 ³⁹ State University of New York, Stony Brook, NY 11794 ⁴⁰ Northern Illinois University, DeKalb, IL 60115

⁴¹ University of Notre Dame, Notre Dame, IN 46556 ⁴² University of Oregon, Eugene, OR 97403 ⁴³ Oxford University, Oxford OX1 3RH, UK ⁴⁴ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ⁴⁵ University of Pennsylvania, Philadelphia, PA 19104 ⁴⁶ Pennsylvania State University, Mont Alto, PA 17237 ⁴⁷ Perkins-Elmer Bioscience, Foster City, CA 94404 ⁴⁸ Purdue University, West Lafayette, IN 47907 ⁴⁹ RWTH Aachen, D-52056 Aachen, Germany ⁵⁰ University of Rochester, Rochester, NY 14627 ⁵¹ Southern Methodist University, Dallas, TX 75275 ⁵² Stanford Linear Accelerator Center, Stanford, CA 94309 ⁵³ Texas A&M University, College Station, TX 77843 ⁵⁴ Tokoku University, Sendai 980, Japan ⁵⁵ University of Wisconsin, Madison, WI 53706 ⁵⁷ Uniwersytet Warszawski, 00681 Warsaw, Poland ⁵⁷ Wavne State University, Detroit, MI 48202 ⁵⁸ Universität Würzburg, Würzburg 97074, Germany ⁵⁹ Yale University, New Haven, CT 06520

Work supported in part by the US Department of Energy under contracts DE–AC02–76CH03000, DE–AC02–98CH10886, DE–AC03–76SF00098, DE–AC03–76SF00515, and W–7405–ENG–048, and by the National Science Foundation under contract PHY-9809799.

Contents

Introduction

2000 Linear Collider Physics Report

1

"The	Case fo	or a 500 GeV e^+e^- Linear Collider"	7
1	Intro	luction	$\overline{7}$
2	Lepto	n colliders and the long-term future of high energy physics	10
	2.1	A 20-year goal for high energy physics	10
	2.2	A 20-year program for accelerators	12
3	Paran	neters of a 500 GeV linear collider	14
4	Why	we expect new physics below 500 GeV	16
	4.1	A fundamental versus composite Higgs boson	17
	4.2	A fundamental Higgs boson should be light	20
	4.3	The constraint on the Higgs mass from precision electroweak	
		data \ldots	21
	4.4	The lightest supersymmetry partners are likely to appear at 500	
		${ m GeV}$	22
	4.5	What if there is no fundamental Higgs boson?	24
	4.6	What if the LHC sees no new physics?	26
5	Physi	cs at a 500 GeV linear collider	27
	5.1	Study of the Higgs boson	29
	5.2	Studies of supersymmetry	37
	5.3	Studies of the top quark	47
	5.4	Studies of W boson couplings $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	49
	5.5	Studies of QCD	51
	5.6	Precision electroweak studies	52
6	Furth	er topics from the linear collider physics program	53
	6.1	Extended Higgs sector	54
	6.2	Supersymmetric particle studies	56
	6.3	New Z' bosons $\ldots \ldots \ldots$	58

	6.4	Large extra dimensions
7	Conclu	ions $\ldots \ldots \ldots$

Sourcebook for Linear Collider Physics

Higgs	Bosons	s at the Linear Collider	73
1	Introd	luction	73
2	Expec	tations for electroweak symmetry breaking	75
3	The S	tandard Model Higgs boson—theory	79
	3.1	Standard Model Higgs boson decay modes	79
	3.2	Standard Model Higgs boson production at the LC \ldots .	80
4	SM H	iggs searches before the linear collider	83
	4.1	Direct search limits from LEP	83
	4.2	Implications of precision electroweak measurements	83
	4.3	Expectations for Tevatron searches	84
	4.4	Expectations for LHC searches	86
5	Higgs	bosons in low-energy supersymmetry	88
	5.1	MSSM Higgs sector at tree-level	89
	5.2	The radiatively corrected MSSM Higgs sector	90
	5.3	MSSM Higgs boson decay modes	95
	5.4	MSSM Higgs boson production at the LC	96
6	MSSN	I Higgs boson searches before the LC	97
	6.1	Review of direct search limits	97
	6.2	MSSM Higgs searches at the Tevatron	98
	6.3	MSSM Higgs searches at the LHC	99
7	Non-e	xotic extended Higgs sectors	102
	7.1	The decoupling limit	103
	7.2	Constraints from precision electroweak data and LC implications	s103
	7.3	Constraints on Higgs bosons with VV coupling $\ldots \ldots \ldots$	105
	7.4	Detection of non-exotic extended Higgs sector scalars at the	
		Tevatron and LHC	106
	7.5	LC production mechanisms for non-exotic extended Higgs sec-	
_		tor scalars	107
8	Measu	rements of Higgs boson properties at the LC	109
	8.1	Mass	109
	8.2	Coupling determinations—light Higgs bosons	112
	8.3	Coupling determinations—intermediate mass Higgs bosons	117
	8.4	Coupling determinations—heavy Higgs bosons	119
	8.5	Summary of couplings	120
	8.6	Total width .	121
	8.7	Quantum numbers	121

	8.8 Precision studies of non-SM-like Higgs bosons	124
9	The Giga-Z option—implications for the Higgs sector	124
	9.1 The MSSM context	125
	9.2 Non-exotic extended Higgs sector context	126
10	The $\gamma\gamma$ collider option	127
11	Exotic Higgs sectors and other possibilities	130
	11.1 A triplet Higgs sector	130
	11.2 Pseudo Nambu Goldstone bosons	131
Supe	symmetry Studies at the Linear Collider	141
1	Introduction	141
2	The scale of supersymmetry	142
	2.1 Naturalness \ldots	142
	2.2 Neutralino relic abundance	145
	2.3 Higgs mass and precision electroweak constraints	146
	2.4 Evidence for new physics	146
3	Determination of masses and couplings	148
-	3.1 Measurement of superpartner masses	148
	3.2 Measurement of supersymmetry parameters	153
4	Tests of supersymmetry	155
	4.1 Confirming supersymmetry	156
	4.2 Super-oblique corrections	156
	4.3 Measurements at linear colliders	157
5	Symmetry violating phenomena	159
	5.1 R-parity violation	159
	5.2 Lepton flavor violation	162
	5.3 \overrightarrow{CP} violation	163
6	Supersymmetry and e^-e^- , $e^-\gamma$, and $\gamma\gamma$ colliders	166
	6.1 Supersymmetry and e^-e^- colliders	166
	6.2 Supersymmetry and $e^{-\gamma}$ colliders	168
	6.3 Supersymmetry at $\gamma\gamma$ colliders	168
7	Comparison with LHC	169
New	Physics at the TeV Scale and Beyond	185
1	Introduction	185
2	Gauge boson self-couplings	187
	2.1 Triple gauge boson coupling overview	187
	2.2 Triple gauge boson measurements	188
	2.3 Electroweak radiative corrections to $e^+e^- \rightarrow 4$ fermions	191
	2.4 Quartic gauge boson couplings	193
3	Strongly coupled theories	195

	3.1	Strong WW scattering and technicolor $\ldots \ldots \ldots \ldots \ldots \ldots 195$
	3.2	Composite Higgs models
4	Conta	act interactions and compositeness
5	New	particles in extended gauge sectors and GUTs 202
	5.1	Extended gauge sectors
	5.2	Leptoquarks
	5.3	Exotic fermions
6	Extra	a dimensions $\ldots \ldots 210$
	6.1	Large extra dimensions
	6.2	Localized gravity
	6.3	TeV-scale extra dimensions
7	Highl	y non-conventional theories and possible surprises $\ldots \ldots \ldots 225$
	7.1	String resonances
	7.2	Non-commutative field theories
8	Deter	mining the origin of new physics
9	Conc	lusions $\ldots \ldots 230$
T 0		
Top Q	uark I	Physics 239
1	Intro	duction $\ldots \ldots 239$
2	Physi	Let h the threshold region
	2.1	Introduction
	2.2	QCD dynamics and cross section
	2.3	$1 \text{ op width } \dots $
	2.4	Iop quark Yukawa coupling 241
0	2.5	Experimental issues
3	Physi	$\begin{array}{c} \text{cs above the top threshold} \\ \text{cs above threshold} \\$
	3.1 2.0	Determination of the top quark–Higgs Yukawa coupling 242
	3.2	10p mass reconstruction
	3.3 2.4	Anomalous couplings $\dots \dots \dots$
4	3.4 C	QCD and electroweak radiative corrections
4	Conc	Iusions
OCD :	and T	wo-Photon Physics 255
4 0 2 (Intro	duction 255
2	OCD	from annihilation processes 255
-	21	The precise determination of $\alpha_{\rm c}$ 255
	$\frac{2.1}{2.2}$	Q^2 evolution of α_s 257
	2.3	Top quark strong moments
3	Two-	photon physics
0	3.1	Experimental requirements
	3.2	Bremsstrahlung photon beam 961
	0.4	Diemostrumung photon beam

	3.3	Photon structure	262
	3.4	$\gamma\gamma$ scattering—total cross section	264
	3.5	$\gamma^*\gamma^*$ scattering—QCD dynamics	265
	3.6	Summary of two-photon physics	268
4	Overa	all summary and conclusions	268
Precis	ion St	udies at the Z and the WW Threshold	271
1	Elect	roweak observables on the Z resonance $\ldots \ldots \ldots \ldots \ldots$	271
	1.1	Machine issues	272
	1.2	Electroweak observables	273
2	m_W f	from WW threshold running $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	277
	2.1	m_W from a polarized threshold scan	278
	2.2	Conclusion	279
3	Elect	roweak tests of the Standard Model	279
	3.1	Parameterizations of deviations from the Standard Model	282
	3.2	Tests of supersymmetry	284
4	Heav	y flavor physics	286
	4.1	Measurement prospects for $\mathcal{B}(B \to \pi^0 \pi^0)$	287
	4.2	$B \to X_q \nu \overline{\nu} \dots \dots$	288
	4.3	Semileptonic B_s decays	288
	4.4	Weak decays of polarized beauty baryons	289
5	Sumr	nary	291

Pathways Beyond the Standard Model

Pathwa	ays Beyond the Standard Model	299
1	Introduction	299
2	Beyond the Standard Model	300
3	Supersymmetry	301
4	New strong interactions at the TeV scale	305
	4.1 Composite Higgs models	306
	4.2 Technicolor theories	307
5	Extra spatial dimensions	309
	5.1 Flat extra dimensions, containing only gravity	310
	5.2 Warped extra dimensions, containing only gravity	311
	5.3 Flat extra dimensions, containing SM gauge fields	311
	5.4 Flat extra dimensions, containing all SM particles	311
6	Surprises	312

Experimental Program Issues

Scena	rios fo	r Linear Collider Running	315
1	Prelir	minaries	315
2	Illust	rative scenarios	317
	2.1	A Higgs boson, but no other new physics, is seen at the LHC .	317
	2.2	No Higgs boson or other new particles are seen at the LHC	318
	2.3	Light Higgs and superpartners are seen at the LHC $\ . \ . \ .$.	318
Intera	ction 1	Regions	321
1	Introduction		
2	The t	two interaction region design at TESLA	322
3	The o	dual-energy interaction region design at the NLC	322
	3.1	The low-energy interaction region at the NLC	326
	3.2	The high-energy interaction region at the NLC	329
	3.3	Alternative interaction region scenarios	330
	3.4	Simultaneous operation	332
Positr	on Pol	larization	333
1	Intro	duction	333
2	The p	ohysics perspective	334
	2.1	The structure of electroweak interactions at high energies	334
	2.2	Standard Model-like Higgs boson	336
	2.3	Supersymmetric particle production	337
	2.4	Some other new physics	339
	2.5	Transverse polarization	339
3	Expe	rimental issues	340
	3.1	Polarimetry	340
	3.2	Frequency of spin flips	341
	3.3	Run time strategy for LL, LR, RL, RR	341
4	Sourc	es of polarized positrons	341
	4.1	Helical undulator	342
	4.2	Backscattered laser	343
5	Conc	lusions	343
Photo	on Coll	ider	347
1	Intro	duction	347
2	Physi	ics Studies at a $\gamma\gamma$ Collider	348
	2.1°	Production of Higgs bosons	348
	2.2	Supersymmetric particle production	349
	2.3	$\gamma \gamma \rightarrow W^+ W^-$ and $\gamma e \rightarrow W \nu \dots \dots \dots \dots \dots \dots \dots$	350

	2.4	$\gamma\gamma \to t\bar{t}$
	2.5	Other processes
3	Comp	bton Backscattering for $\gamma\gamma$ Collisions $\ldots \ldots \ldots \ldots \ldots \ldots 352$
	3.1	Introduction
	3.2	Photon spectra
	3.3	Interaction region design and backgrounds
4	IR op	tical system
	4.1	Optics design
	4.2	Beam pipe modifications
5	Laser	system
	5.1	Requirements and overview
	5.2	Laser system front end
	5.3	Mercury amplifier
	5.4	Multiplexer and beam transport
	5.5	Compressor / stretcher
	5.6	Laser facility, systems design and risk reduction
e^-e^-	Collisio	ons 369
1	Gener	ral characteristics of e^-e^- collisions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 369$
2	Physi	cs at e^-e^- colliders $\ldots \ldots 370$
	2.1	Møller scattering
	2.2	Higgs bosons
	2.3	Supersymmetry
	2.4	Bileptons
	2.5	Other physics
3	Accel	erator and experimental issues
	3.1	Machine design
	3.2	Interaction region
	3.3	Detectors
4	Concl	lusions $\ldots \ldots 375$
	,	

Detectors for the Linear Collider

Detect	Detectors for the Linear Collider			
1	Introduction	379		
2	Interaction region issues for the detector	379		
	2.1 Time structure	379		
	2.2 IR layout	380		
	2.3 Small spot size issues	382		
	2.4 The beam-beam interaction	382		
3	Subsystem considerations	385		

	3.1	Vertex detector	385
	3.2	Tracking	387
	3.3	Calorimetry	388
	3.4	Muon detection	392
	3.5	Solenoid	394
	3.6	Particle ID	394
	3.7	Electronics and data acquisition	395
4	Detect	ors	397
	4.1	L detector for the high-energy IR	397
	4.2	SD detector for the high energy IR	404
	4.3	P detector for the lower-energy IR	409
	4.4	Cost estimates	412

Questions for Further Study

Sugges	ted Stu	udy Questions on LC Physics and Experimentation	417
1	Physics	s issues	417
	1.1	Higgs physics	417
	1.2	Supersymmetry	418
	1.3	New physics at the TeV scale	419
	1.4	Top quark physics	419
	1.5	QCD and two-photon physics	420
	1.6	Precision electroweak measurements	420
2	Acceler	rator issues	421
	2.1	Running scenarios	421
	2.2	Machine configuration	421
	2.3	Positron polarization	422
	2.4	Photon collider	422
	2.5	e^-e^-	423
	2.6	Fixed Target	423
3	Detect	or issues	423
	3.1	Detectors	423