Tracking with TRF++

Norman A. Graf
SLAC
Santa Cruz ‘02
TRF++

- TRF++ is a suite of Object-Oriented packages devoted to track finding and fitting.
- Modular, generic, supports most geometries used in collider detectors.
- Detector element descriptions, hit descriptions (1D and 2D with errors), propagators, multiple scattering, energy loss, fitters.
Track Definition

- We define a track as an ordered list of hits (or misses) at measurement surfaces along with the best fit at that surface (TrackStates).

- The track fit consists of five parameters appropriate to the surface plus one parameter which is provided by the constraint that the track lie on the surface.
Surfaces

- Surfaces generally correspond to geometric shapes representing detector devices.
- They provide a basis for tracks, and constrain one of the track parameters.
- The track vector at a surface is expressed in parameters which are “natural” for that surface.
- Cylinder, XYPlane, ZPlane, DCA
A Detector describes a collection of Layers which are organized in a hierarchy of detectors.

Layers describe the geometry of the detector by holding Surfaces, either directly or through sub Layers.
Propagators

- Propagators propagate a track (with or without covariance matrix) to a new surface.
 - Propagators to and from all the surfaces are defined, e.g.
 - PropCylCyl
 - PropDcaCyl
 - PropXYZ

- Currently defined for homogeneous fields.
Interactions with Material

- Interactions with material affect the track state by perturbing the track covariance matrix (e.g. stochastic processes such as MCS) or the track vector itself (dE/dx).

- This behavior is encapsulated in an abstract Interactor
 - Specific instances inherit from this, such as ThinCylMs.
 - Energy loss is handled by abstract DeDX
 - DeDxBethe or DeDxFixed
Track Fitting

- Can be combined with track finding to accomplish both tasks at once.
 - Assumes road-following approach.
 - Introduce Paths, which define track-finding strategies. Run-time configurable.
- Can also fit hits which have been identified as constituents of a track by a separate pattern recognition package.
Track Fitting

- Pattern recognition program delivers a list of hits and an estimate of the global track parameters.
- Track Fit uses the Kalman Filter algorithm to reconcile the track hypothesis with the hit measurements in an iterative manner.
- After fitting each hit, the track covariance matrix is updated to account for the effects of MCS, and the track vector is modified to account for dE/dx.
- The track is then propagated to the next surface.
Track Fitting

- χ^2 at each surface can be used to reject outliers or search for kinks caused by decays in flight or bremsstrahlung.
- Misses are added with a probability which reflects the efficiency of the detector
 - Cut on combined probability, not number of misses.
- End up with the best fit at the extrema of the track, project to vertex or calorimeter.
 - Smoothing gives the best fit at all points.
Simulations

- Simulators are provided to generate hits and account for MCS and energy loss.
- Can be used for fast simulation:
 - Particles from MC event are propagated to each detector element.
 - The appropriate hit is generated from the intersection of the track with the surface.
 - Track vector is smeared for MCS and modified for energy loss, then propagated to next element.
TRF++

- C++ version developed at D0 for use in RunII.
- Detector-specific packages form a thin layer on top of the core trf++ functionality.
 - Access detector-specific data/geometry, feed into trf++ format.
 - Return tracks in experiment-specific format.
- However, written to C++ standard, and required compliant compiler.
 - gcc 2.95 and MSVC++v6 not compliant!
TRF++

- gcc 3 much more compliant, compiles trf++.
 - Not yet available under cygwin.
- Just starting with MSVC++.Net
- Hope to be able to start work incorporating trf++ into LCD environment on Linux while understanding limitations (if any) on Windows.