Dark Matter Searches

Bernard Sadoulet
Center for Particle Astrophysics
& Dept. of Physics /LBNL
University of California,
Berkeley

The Astrophysics Puzzle

Non baryonic hints MACHOs

What Can Particle Physics Offer?

Axions

Light Massive Neutrinos

WIMPs

Direct Detection of WIMPs

Current status and strategies

DAMA

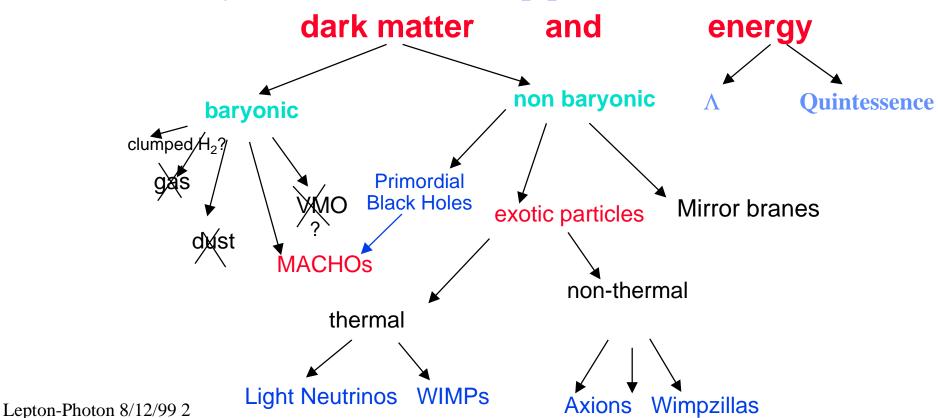
CDMS

Outlook

Indirect Detection of WIMPs

Dark Matter and Dark energy

Existence: Solid evidence for Dark Matter => Consensus


Rotation curves in spiral galaxies

Globular clusters/ gas around elliptical galaxies

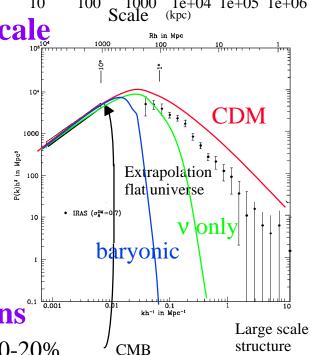
Velocity dispersion in clusters

X-ray gas in clusters Gravitational lensing by clusters Same depth of potential wells

Nature? Systematic effort to map possibilities

Indications for non-baryonic nature

a)Effective Ω vs. Ω


 Ω appears to be much higher than conventional primordial nucleosynthesis

Not undermined by recent cosmic microwave background + Supernova results (systematics?)

Independent of Inflation!

b)Comparison of CMB $\Delta T/T$ and large scale

Order of magnitude of $\Delta T/T$ is natural with non baryonic dark matter and adiabatic fluctuations!

at z; 1000

mological

uster Evol.

spectrum Shayæt al.

1000 1e+04 1e+05 1e+06

Primordial Nucleosynthesis

H=65 km/s/Mpc

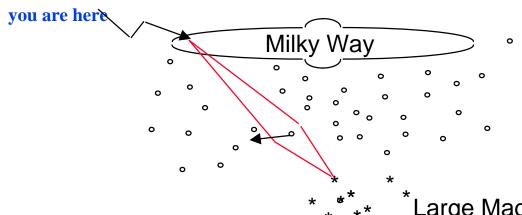
100

0

 $\Omega_{
m eff}$

c) Implausible efficiency of hiding baryons

Baryonic content of clusters: Baryon fraction 10-20% e.g.

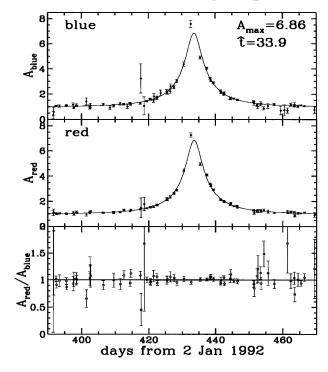

Would have to hide >80% baryons in MACHOs

Lepton-Photon 8/12/99 3

MACHOs

The basic idea

Massive Compact Halo Objects



Large Magellanic Cloud=LMC

3 main collaborations CfPA MACHO, EROS, OGLE

+ new groups and M31

Clear demonstration of microlensing

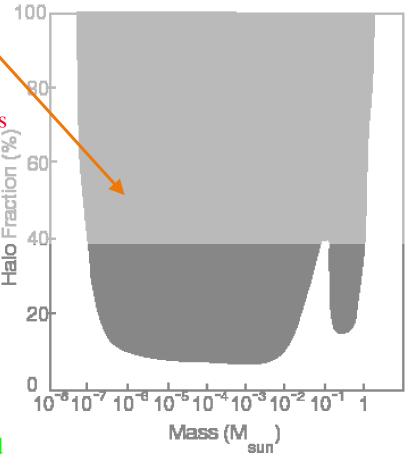
MACHOs

No small LMC/SMC duration events

=> Dark Matter Brown Dwarfs

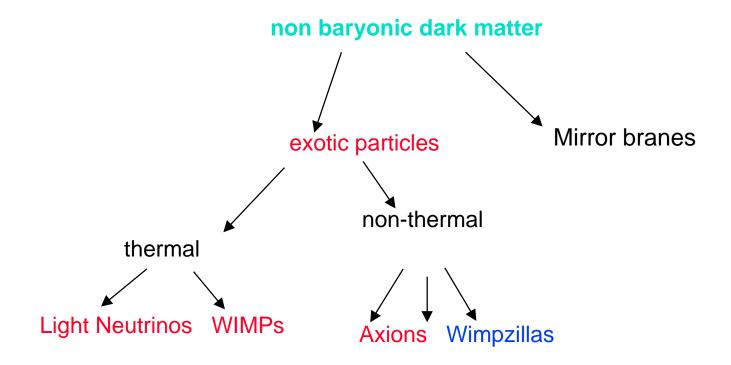
Puzzling long duration LMC events

- Degeneracy between velocity, distance and mass We do not know where the lenses are!
- Even if distributed as halo:


MACHO Group result: 10%; fraction; 100%

Serious difficulties with "natural" conclusion

that it forms 100% of halo


how to hide O.5 Msun objects? how to build a self consistent cosmology?

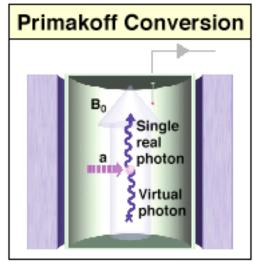
- The few lenses whose positions are known are in the host galaxies, not in the halo!
- Not enough events (2) towards SMC
- My best bet: puffed up Large Magellanic Cloud <= tidal interactions with the Milky Way

2nd generation: EROS II, OGLE II, SuperMachos + Stellar Interferometric Mission

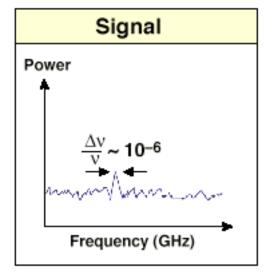
What can Particle Physics Offer?

Axions

Invented to save QCD from strong CP violation


Current experimental limits are such that if they exist, they have to be cosmologically significant

Window: 10⁻⁶-10⁻³ eV


Produced out of equilibrium

Theoretical discussion if Peccei Quinnn symmetry breaking occurs after inflation => global strings which radiate axions. Technically difficult to compute (Shellard Sikivie) Loss mass region may be not favored

Method of detection

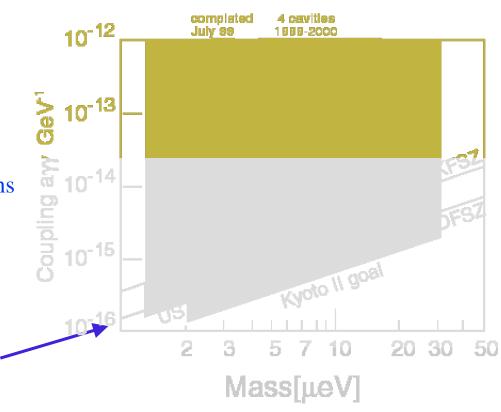
Tunable cavity
Most suitable for low mass region

Axions

After 2 pilot experiments missing sensitivity

The US axion experiment

Livermore–MIT–UC Berkeley/LBNL


- U. Florida U. Chicago/FNAL
- -INR Moscow experiment

First data analyzed, published, PRL 98 demonstrated sensitivity to KSVZ axions

Currently scanning wider region

R&D on DC SQUID amplifiers underway at Berkeley

=> proposed upgrade reaching DFZS

Kyoto experiment

Matsuki et al. (Rydberg atoms)

Starting in narrow region but high sensitivity

These experiments reach a cosmological sensitivity!

Potential Problem: one decade out three mass decades allowed Lepton-Photon 8/12/99 8

Light Massive Neutrinos

Thermal equilibrium in early universe

+ Decoupling when relativistic

number; number of photons density <-> mass $40 \ eV/c^2 => \Omega_1 1$

Cosmology

Cannot form galaxy alone:

- mixed dark matter
- seeding by topological defects

+ dwarf galaxy halos too dense for neutrinos

Experimental tools

Direct measurement of cosmological neutrinos appears impossible

=> laboratory mass experiments:

Tritium M_{ve}<5eV

Double beta decay $M_{\text{Majorana ve}} < 1 \text{eV}$

Oscillation experiments (LSND, Karmen, CHORUS, NOMAD, Chooz, Palo Verde, atmospheric and solar neutrinos)

Neutrinos are a small mass

Confirmation of v_{μ} -> v_{τ} or v_{s} oscillation by SuperKamiokande Δm^{2} taken at face value=> Density of cosmological neutrinos at minimum density of stars

Neutrino mass also hinted by for solar neutrinos

But no evidence for eV mass scale (if we reserve judgment on LNSD)

Lepton-Photon 8/12/99 9

Weakly Interactive Massive Particles

Particles in thermal equilibrium

+ decoupling when nonrelativistic

```
Density ~ 1/(interaction rate)

\Omega; 1 => \sigma v; 10<sup>-26</sup> cm<sup>3</sup>/s

Generic Class
```

Cosmology points to W&Z scale

Inversely standard particle model requires new physics at this scale

(e.g. supersymmetry) => significant amount of dark matter

We have to investigate this convergence!

Detection methods

• Elastic scattering : Direct detection

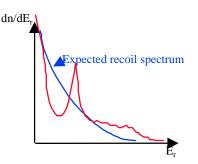
Expected event rates are low (<< radioactive background)

Small energy deposition (; few keV)

Signal = nuclear recoil

Background = electron recoil (if no neutrons)

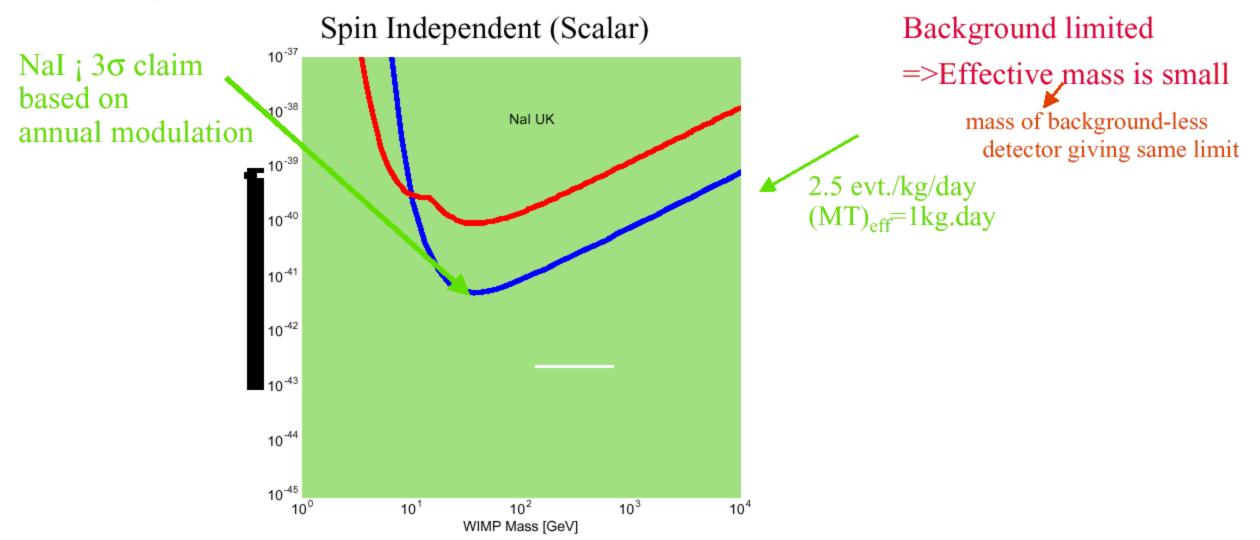
Indirect detection of annihilation products


Photon lines GLAST

VERITAS/HESS if density cusp at the galactic center (controversial)

Antiprotons, positrons AMS (but confinement time)

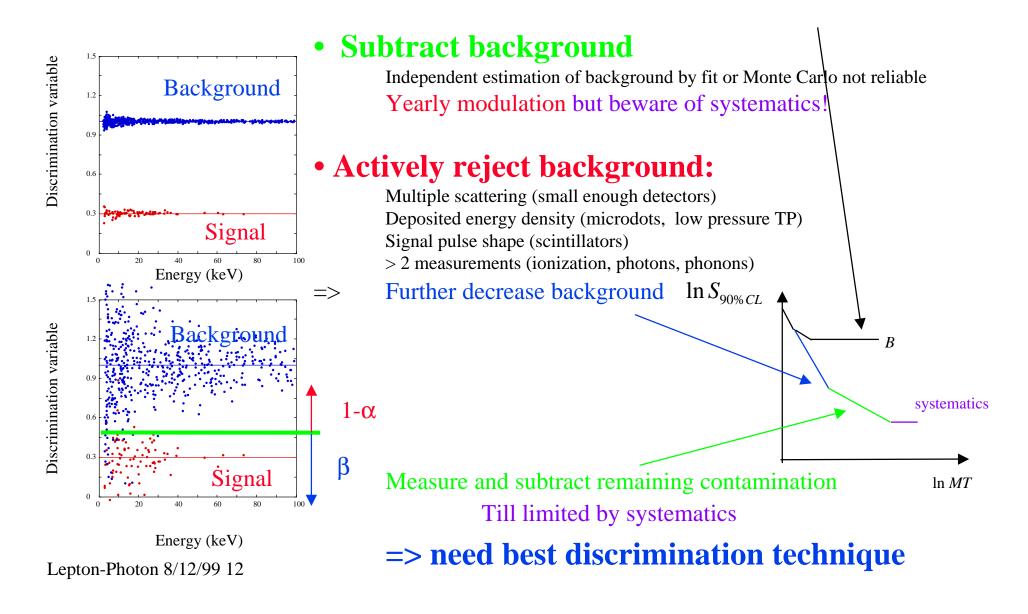
Neutrinos from annihilation in sun or earth (atmospheric neutrinos)


Current generation; 1000m²: MACRO-Baksan-SuperK -> km³ array

Direct Detection: Current Status

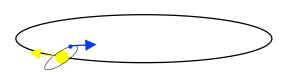
Very active field

- Ge diodes (1989: USC/PNL, UCSB/LBNL)
 - -> Heidelberg/Moscow = most reliable limit at large mass
- Large NaI counters (100 kg installed in Gran Sasso!)

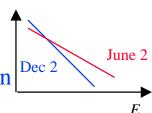


• Cryogenic detectors: CDMS starting to test DAMA claim

Gets into Minimum Supersymmetry territory!


Direct Detection: Background Strategy

• Decrease background: ultra low radioactivity technology However when background appears, no more progress!


DAMA and Annual Modulation

Basic idea

Wimp wind; isotropic in halo frame; 270km/s Sun goes through this cloud at 220km/s Earth adds or subtract 15km/s to sun velocity

 $=> \pm 4.5\%$ modulation in rate, energy deposition

DAMA claim: 2 measurement campaigns (but set-up change prevents comparison)


19511 kg days

 $2.86\sigma = 99.6\%$ CL

Goodness of fit =7.4% CL

No systematics found with right phase

(but what about lags?)

June 2

June 2

Dec 2

Difficulties

No continuous observation of signal over at least one full period

Dec 2

A random drift could explain effect + phase is locked

Claimed efficiencies appear unphysical

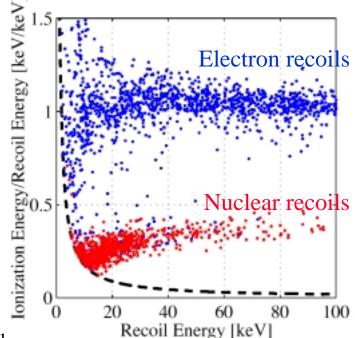
No argument for required stability of detection efficiency close to threshold

Need better than 1% stability

Discrimination in Cryogenic Detectors

Principle: Phonon mediated detectors

Simultaneous ionization measurement in Ge or Si (CRESST Photons in CaWO₄)


Advantages

Sensitivity down to low energy

Phonons measure the full energy (no ionization yield, quenching factor)

- Active rejection of background: recognition of nuclear recoil
- Maximum amount of information on rare events <= non equilibrium phonons: x-y position, surface

165 g Ge thermal detector at 20mK (CDMS)

Similar results with athermal phonons

Lepton-Photon 8/12/99 1-

The CDMS Experience

Approach

"A background can hide another one!"

Ionization (Ge,Si) + phonons(thermal and athermal) Careful radioactivity control but shallow site $(\mu -> n)$

A running experiment

Since 1996 Excellent threshold and rejection >99% above 15GeV

Good gamma background (; 1/kg/keV/day before rejection)

1kg now installed

But Surface Electrons

Carrier back diffusion: ionization loss mimic nuclear recoil

Corrective action

Better contacts | essentially all surface electrons eliminated

Close packing

Cleaning

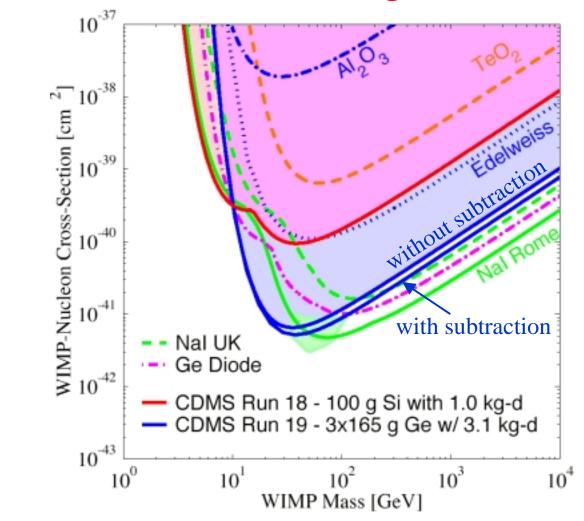
=>

Unfortunately neutrons!

But able to test DAMA

Athermal phonons provide another dimension

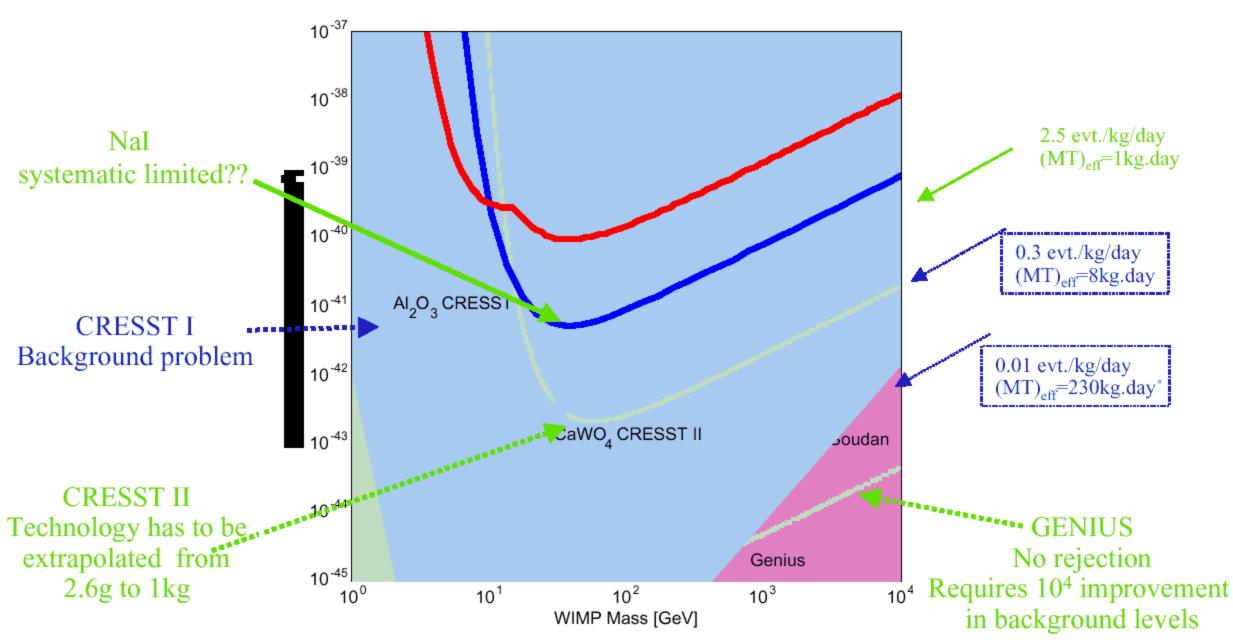
Interactions close to surface give faster pulses


Demonstrated on Si and now Ge. Compatibility with good contact

=> get closer to a background free experiment

nuclear gammas recoils "honon Rise Time [µs]

CDMS Results


Exclude half of DAMA claim region

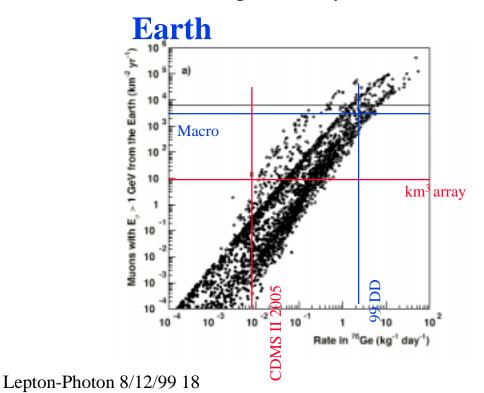
Current run: x 4 in statistics => full exploration of DAMA claim

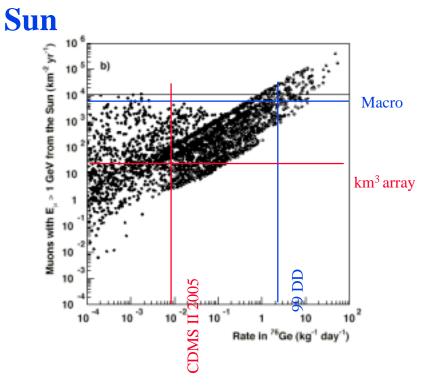
CDMSII deep underground: in final stage of review by DOE/NSF Lepton-Photon 8/12/99 16

WIMPS Direct Detection: an Outlook

Direct-Indirect Comparison

Neutrinos from annihilation in sun or earth


With current generation of neutrino arrays (10^4 m²):


Limits MACRO/Baksan: few $10^{-14} \,\mu$'s /cm²/s > 3Gev

About similar to DAMA/ Current direct detection experiments

2nd generation of dark matter detector should do better

With future neutrino observatory of 1km³ and higher threshold (smaller cone), improvement of indirect detection by factor 10-100 at large mass => complementary search! Bergström et al., PR D 55(1997) 1765, Astro-ph/9806293

Conclusions

Dark Matter=a fundamental question: Baryonic vs non baryonic

Need for a systematic mapping of possibilities

Two priorities • Understand nature of MACHOs

• Vigorous searches for non baryonic dark matter

The searches for the three main non baryonic candidates begin to reach cosmological sensitivities

Axion at KSFZ in lowest mass range

Neutrinos at least the density of stars

WIMPs: even if DAMA claim is premature, we enter supersymmetric territory

Clearly complementary to searches at accelerators

Axions and supersymmetry

Particle astrophysics as a tool of the field

Need for vigorous R&D: best sensitivity, best background

Examples of the cryogenic detectors, liquid Xe and low pressure TPC

Is it the whole story?

Fundamental question raised by current astrophysics: why Ω_{v} ; Ω_{b} ; Ω_{DM} ; Ω_{Λ} Do we really understand gravity?