Fragmentation and Hadronization

Bryan Webber

LP99, 13 August 1999

- Jet fragmentation theory
- Hadronization models
- Single-particle yields and spectra
- Quark and gluon jets
- Event shapes and power corrections
- Current and target fragmentation
- Heavy quark fragmentation
- Bose-Einstein correlations
- WW fragmentation
- Conclusions

– Typeset by Foil $\mathrm{T}_{\!E\!X}$ –

having time to discuss:

- Fragmentation function parametrizations
- Photon fragmentation function
- Polarization in hadronization
- Fluctuations and intermittency
- Two-particle correlations
- Heavy quark production in jets $(g \rightarrow c\bar{c}, b\bar{b})$
- Transverse energy flow in deep inelastic scattering
- Underlying event in DIS and hadron-hadron collisions
- Identified particle production in DIS
- Tests of QCD coherence
- Jet profiles and substructure
- See the fragmentation web pages of the European network "Hadronic Physics with High Energy Electromagnetic Probes" (HaPHEEP) for much useful information:

http://www.pv.infn.it/ jakob/fragmentation.html

Jet tragmentation – theory

Recall the basic factorization structure of the single-particle inclusive distribution, e.g. in $e^+e^- \rightarrow hX$:

$$F^{h}(x,s) = \sum_{i} \int_{x}^{1} \frac{dz}{z} C_{i}(z,\alpha_{\mathsf{S}}(s)) D_{i}^{h}(x/z,s)$$

 $s = q^2$, $x = 2p_h \cdot q/q^2 = 2E_h/E_{cm}$

 C_i are the coefficient functions for this particular process (including all selection cuts etc.) and D_i^h is the universal fragmentation function for parton $i \rightarrow$ hadron h.

The fragmentation functions are not perturbatively calculable but their *s*-dependence (scaling violation) is given by the DGLAP equation:

$$s\frac{\partial}{\partial s}D_{i}^{h}(x,s) = \sum_{j} \int_{x}^{1} \frac{dz}{z} P_{ji}(z,\alpha_{\rm S}(s))D_{j}^{h}(x/z,s)$$

Thus they can be parametrized at some fixed scale s_0 and then predicted at other energies.

– Typeset by FoilT $_{\!E\!X}$ –

enhanced by large logarithms, which need to be resummed.

• At small x, leading $\log x$ enhanced terms can be resummed by changing the DGLAP equation to

$$s\frac{\partial}{\partial s}D_i^h(x,s) = \sum_j \int_x^1 \frac{dz}{z} P_{ji}(z,\alpha_{\rm S}(s))D_j^h(x/z,z^2s)$$

The effect of this is to generate a characteristic humpbacked shape in the variable $\xi = \ln(1/x)$, with a peak at $\xi_p \sim \frac{1}{4} \ln s$.

Large logarithms of ratios of invariants may also appear inside the coefficient functions C_i, for example in threejet events when the angles between jets become small. In some cases these can be absorbed into a change of scale in the fragmentation functions.

Although universal, fragmentation functions are factorization scheme dependent. The splitting functions P_{ji} are also scheme dependent. To specify the scheme requires calculation of the coefficient functions to (at least) next-to-leading order. This has only been done in a few cases. Thus there is need for theoretical work to make full use of the data on fragmentation functions.

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

Hadronization Wodels

General ideas

- Local parton-hadron duality
 - Inclusive spectra and multiplicities
- Universal low-scale lpha s
 - Heavy quark spectra, event shapes

Specific models

– Typeset by FoilT $_{\! E\! X}$ –

Cluster (HERVVIG)

Uses preconfinement property of parton shower:

Few parameters: natural p_T and heavy particle suppression

Problems with massive clusters, baryons, heavy quarks

String (JEISEI)

Uses string dynamics: linear potential, area law

 $|M(q\bar{q} \to h_1 \cdots h_n)|^2 \propto e^{-bA}$

- Extra parameters for p_T and heavy particle suppression
 Some problems with baryons
- String (UCLA)
 - Takes area law more seriously (mass suppression)
 - **\diamond** Extra parameters for p_T
 - Some problems with baryons

Mesons

Particle	Multiplicity	HERWIG	JETSET	UCLA	Expts
		5.9*	7.4	7.4	
Charged	20.96(18)	20.95	20.95	20.88	ADLMO
π^{\pm}	17.06(24)	17.41	16.95	17.04	ADO
π^0	9.43(38)	9.97	9.59	9.61	ADLO
η	0.99(4)	1.02	1.00	0.78	ALO
$ ho(770)^0$	1.24(10)	1.18	1.50	1.17	AD
$\omega(782)$	1.09(09)	1.17	1.35	1.01	ALO
$\eta'(958)$	0.159(26)	0.097	0.155	0.121	ALO
$f_0(980)$	0.155(8)	0.111	~ 0.1	—	ADO
$a_0(980)^\pm$	0.14(6)	0.162	—	—	0
$\phi(1020)$	0.097(7)	0.104	0.194	0.132	ADO
$f_2(1270)$	0.188(14)	0.186	~ 0.2	—	ADO
$f_2'(1525)$	0.012(6)	0.021	—	—	D
K^\pm	2.26(6)	2.16	2.30	2.24	ADO
K^0	2.074(14)	1.98	2.07	2.06	ADLO
$K^*(892)^\pm$	0.718(44)	0.670	1.10	0.779	ADO
$K^*(892)^0$	0.759(32)	0.676	1.10	0.760	ADO
${\sf K}_2^*(1430)^0$	0.084(40)	0.111	—	—	DO
D^\pm	0.187(14)	0.161	0.174	0.196	ADO
D^0	0.462(26)	0.506	0.490	0.497	ADO
$D^*(2010)^\pm$	0.181(10)	0.151	0.242	0.227	ADO
D^\pm_s	0.131(20)	0.115	0.129	0.130	0
B*	0.28(3)	0.201	0.260	0.254	D
$B^{**}_{\mathrm{u,d}}$	0.118(24)	0.013	—	—	D
J/ψ	0.0054(4)	0.0018	0.0050	0.0050	ADLO
$\psi(3685)$	0.0023(5)	0.0009	0.0019	0.0019	DO
$\chi_{ m c1}$	0.0086(27)	0.0001	—	—	DL

Baryons

Particle	Multiplicity	HERWIG	JETSET	UCLA	Expts
		5.9*	7.4	7.4	
р	1.04(4)	0.863	1.19	1.09	ADO
Δ^{++}	0.079(15)	0.156	0.189	0.139	D
	0.22(6)	0.156	0.189	0.139	0
Λ	0.399(8)	0.387	0.385	0.382	ADLO
$\Lambda(1520)$	0.0229(25)	—	—	—	DO
Σ^{\pm}	0.174(16)	0.154	0.140	0.118	DO
Σ^0	0.074(9)	0.068	0.073	0.074	ADO
$\Sigma^{\star\pm}$	0.0474(44)	0.111	0.074	0.074	ADO
[I]	0.0265(9)	0.0493	0.0271	0.0220	ADO
$\Xi(1530)^0$	0.0058(10)	0.0205	0.0053	0.0081	ADO
Ω^{-}	0.0012(2)	0.0056	0.00072	0.0011	ADO
$\Lambda_{ m c}^+$	0.078(17)	0.0123	0.059	0.026	0

* Recent ALEPH tuning with strangeness suppression 0.8 (G. Rudolph)

• The orbitally-excited $J = \frac{3}{2}$ baryon $\Lambda(1520)$ is produced almost as much as the unexcited $J = \frac{3}{2}$ baryon $\Sigma(1385)$.

It is remarkable that most measured yields (except for the 0^- mesons) lie on the family of curves

$$\frac{\langle n \rangle}{2J+1} = ae^{-M/T}$$

with $T \simeq 100$ MeV (Chliapnikov).

– Typeset by FoilT $_{\! E\! X}$ –

– Typeset by FoilT $_{\!E\!X}$ –

In e^+e^- annihilation, low-x fragmentation functions agree remarkably well with the resummed (NLLA or MLLA) predictions over a wide energy range

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{-}{E\!X}$ –

In $pp \rightarrow$ dijets the relevant scale is taken to be $M_{JJ} \sin \theta$ where M_{JJ} is the dijet mass and θ is the jet cone angle

– Typeset by FoilT $_{\!\!E\!}\!\mathrm{X}$ –

• When plotted against $\ln p$ instead of $\ln(1/x)$, the CDF data show clearly the scale-independence of the soft particle distribution (a test of colour coherence).

– Typeset by FoilT $_{\!\!E\!}\!\mathrm{X}$ –

(rather than antiquark) fragmentation, selected by hemisphere using SLC beam polarization:

– Typeset by FoilT $_{\!E\!X}$ –

Here one sees strong particle/antiparticle differences in the expected directions:

– Typeset by FoilT $_{\!\!E\!}\!\mathrm{X}$ –

Quark and gluon jets

 DELPHI select gluon jets by anti-tagging heavy quark jets in Y and Mercedes three-jet events

– Typeset by FoilT $_{\!E\!X}$ –

In general the relative multiplicities of identified particles are consistent with those of all charged, with no clear excess of certain species in gluon jets (ALEPH, DELPHI, SLD)

In particular there is no enhanced η or $\phi(1020)$ production:

OPAL: $N_g(\eta)/N_q(\eta) = 1.29 \pm 0.11$ DELPHI: $N_g(\phi)/N_q(\phi) = 0.7 \pm 0.3$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

the same hemisphere. Monte Carlo studies indicate that such jets should be similar to those emitted by a point source of gluon pairs (e.g. a ${}^{1}S_{0} Q\bar{Q}$ state).

Next-to-leading order calculations of the relevant coefficient functions are needed to check universality. However the qualitative message is clear:

Gluon jets have softer fragmentation functions than light quark jets, and higher charged multiplicity.

(large angle) is close to the ratio of colour factors $r \equiv C_A/C_F = 2.25$, in agreement with Local Parton-Hadron Duality (LPHD).

OPAL: $r_{ch}(|y| < 1) = 1.919 \pm 0.047 \pm 0.095$

– Typeset by FoilT $_{\! E\! X}$ –

with relatively large p_T (i.e. low rapidity)

OPAL: $r_{ch}(p < 4, 0.8 < p_T < 3 \text{GeV}) = 2.29 \pm 0.09 \pm 0.015$

DELPHI have also observed scaling violation in gluon jet fragmentation by studying the dependence on

$$\kappa_H = E_{jet} \sin(\theta/2) \ (\simeq \frac{1}{2}\sqrt{sy_3})$$

where θ is the angle to the closest jet. This is expected to be the relevant scale, at least when θ gets small.

```
– Typeset by FoilT_{\!E\!}\!\mathrm{X} –
```


The ratio of scaling violations in quark and gluon jets provides another measure of C_A/C_F :

DELPHI: $r_{\text{sc.viol.}} = 2.23 \pm 0.09 \pm 0.06$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- A crucial point in the above study is that 3-jet events were not selected using a fixed jet resolution y_{cut} , but rather each event was clustered to precisely 3 jets. This avoids 'biasing' the gluon jet sample (by preventing further jet emission above y_{cut}).
- The same point is well illustrated by the analysis of average multiplicities in 2- and 3-jet events. If $N_{q\bar{q}}(s)$ is the 'unbiased' $q\bar{q}$ multiplicity, then in events with precisely 2 jets at resolution y_{cut} we get a 'rapidity plateau':

where $N'(s) \equiv sdN/ds$. Clustering each event to 3 jets we get this with y_3 in place of y_{cut} , plus an unbiased gluon jet:

$$N_3(s) \simeq N_2(s, y_3) + \frac{1}{2}N_{gg}(sy_3)$$

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

here vs. $p_1^T \sim \sqrt{sy_3}$).

The ratio of slopes gives yet another measure of C_A/C_F :

 $r_{\rm \,mult} = 2.246 \pm 0.062 ({\rm stat.}) \pm 0.080 ({\rm sys.}) \pm 0.095 ({\rm theo.})$

Event snapes and power corrections

• New e^+e^- event shape data at $\sqrt{s} \ge 189$ GeV confirm good agreement with models.

– Typeset by FoilT $_{\!\!E\!}\!\mathrm{X}$ –

behaved (1/Q) discrepancies with NLO perturbation theory

Monte Carlo studies and models based on a universal lowscale form for α_s suggest that for some shape variables $(f = 1 - T, C, \rho)$, the dominant non-perturbative effect is a shift in the distribution by an amount $c_f \mathcal{P}$ where $\mathcal{P} \sim 1/Q$. This implies that

$$\begin{array}{lll} \langle f \rangle &=& \langle f \rangle_{\rm pert} + c_f \mathcal{P} + \mathcal{O}(1/Q^2) \\ \\ \langle f^2 \rangle &=& \langle f^2 \rangle_{\rm pert} + c_f \langle f \rangle_{\rm pert} \mathcal{P} + \mathcal{O}(1/Q^2) \end{array}$$

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

• The data on the second moment suggest that significant $1/Q^2$ terms are needed.

According to the universal low-scale α_s model, the value of \mathcal{P} can be used to measure the mean value of α_s below some infrared matching scale μ_1 ,

$$\alpha_0(\mu_{\rm I}) \equiv \frac{1}{\mu_{\rm I}} \int_0^{\mu_{\rm I}} d\mu \, \alpha_{\rm S}(\mu^2)$$

– Typeset by Foil $T\!\!\!E\!X$ –

 $lpha_0(\mu_{
m I})\simeq~0.5$ for $\mu_{
m I}=2~{
m GeV}$

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Current and target tragmentation

H1 and ZEUS study distributions of $x_p = 2|\mathbf{p}|/Q$ in the current and target hemispheres in the Breit frame.

C U R R E N T A R GE T

In the current hemisphere one expects fragmentation of the current jet (C), similar to e^+e^- . In the target hemisphere, contribution T1 is similar to C, T2 gives extra particles with $x_p < 1$, while T3 gives $x_p \gtrsim 1$, generally outside acceptance.

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{-}{EX}$ –

indeed similar to e^+e^- . Differences at low Q^2 are consistent with the boson-gluon fusion contribution at low Q^2 .

– Typeset by Foil $T\!\!\!E\!X$ –

* The current-nemisphere distribution of $\xi = \ln(1/x_p)$ is also similar to e^+e^- , i.e. close to gaussian with little Bjorken x dependence.

– Typeset by Foil $T\!\!\!E\!X$ –

At low Q^2 there is evidence of strong subleading corrections. The distribution is skewed towards higher values of ξ (smaller x_p), contrary to NLLA predictions.

Skewness $\equiv \left\langle (\xi - \bar{\xi})^3 \right\rangle / \left\langle (\xi - \bar{\xi})^2 \right\rangle^{\frac{3}{2}}$

ZEUS preliminary 1994–1997

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

order perturbative prediction (CYCLOPS) at low x_p and Q^2 .

Discrepancies could be due to power-suppressed $(1/Q^2)$ corrections, of dynamical and/or kinematic origin. The bands correspond to a correction factor

$$\left[1 + \left(\frac{m_{\text{ eff}}}{Qx_p}\right)^2\right]^{-1} \qquad (0.1 < m_{\text{ eff}} < 1 \text{ GeV})$$

– Typeset by Foil $T\!\!\!E\!X$ –

MLLA, possibly due to the T3 contribution "leaking" into the region $x_p < 1$. If anything, models predict too much leakage. Little Q^2 dependence is observed.

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Heavy quark tragmentation

 New data on b → B fragmentation from SLD, using highprecision vertexing, discriminate between parton-shower plus hadronization models. [N.B. Uncorrected data.]

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

the amount of non-perturbative QCD leads to a reduction in

✤ Pure Peterson: $\epsilon_b = 0.036$ JETSET (\simeq LLA QCD) + Peterson : $\epsilon_b = 0.006$ NLLA QCD + Peterson (Nason & Oleari): $\epsilon_b = 0.002$

♦ In the universal low-scale α_s model, the perturbative prediction is extrapolated smoothly to the nonperturbative region, with no Peterson function (Dokshitzer, Khoze & Troyan)

Bose-Einstein correlations

• Definite evidence for elongation of the $\pi^{\pm}\pi^{\pm}$ source region along the thrust axis (DELPHI, L3, OPAL)

– Typeset by FoilT $_{\! E\! }\! \mathrm{X}$ –

Expt	R_L (fm)	R_T (fm)	R_L/R_T
DELPHI	0.85 ± 0.04	0.53 ± 0.04	1.61 ± 0.10
L3	0.74 ± 0.04	$0.56\substack{+0.03 \\ -0.06}$	$1.23\pm0.03^{+0.40}_{-0.13}$
OPAL	0.935 ± 0.029	0.720 ± 0.045	1.30 ± 0.12

This has a good explanation in the Lund string model (Andersson & Ringnér)

in $\Lambda\Lambda$ (S=1). Plots A–C correspond to different comparison (no-correlation) samples.

The source size appears to decrease with increasing particle mass:

Particles	$R_{ m source}~({ m fm})$
$\pi\pi$	$0.65 \pm 0.04 \pm 0.16$
KK	$0.48 \pm 0.04 \pm 0.07$
$\Lambda\Lambda$	$0.11 \pm 0.02 \pm 0.01$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

vvvv tragmentation

In general we would expect correlations between W hadronic decays due to overlap of hadronization volumes. This occurs mainly in the central region, and is orientation-dependent.

- Colour reconnection effects have been searched for in single-particle distributions.
- Bose-Einstein correlations between hadrons from different W's are also being looked for.

charged particle spectra:

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

DELPHI report a possible small ($\sim 2\sigma$?) effect in the distribution of p_T (relative to the thrust axis):

W's also seem to be suppressed:

Conclusions

- Detailed fragmentation studies need more theoretical input (coefficient functions).
- Hadronization studies suggest that mass is the dominant factor in heavy particle suppression, but baryon production is not well modelled.
- Gluon jets have the expected properties and can be used to measure ratio of colour factors C_A/C_F . However, no strong evidence of different particle content.
- 1/Q power corrections appear universal at the $\sim 20\%$ level. The corresponding low-scale $\alpha_{\rm S}$ is ~ 0.5 .
- Fragmentation in DIS shows disagreements with perturbative predictions: higher-order and/or nonperturbative?
- New b quark fragmentation data test models and suggest perturbative effects dominate.
- Bose-Einstein (Fermi-Dirac) correlations show elongation of source, and source 'shrinkage' with increasing mass.
- WW fragmentation still shows no firm evidence for correlation between the decay products of the two W's.

(Evolution of b fragmentation to NLC)

Fragmentation function for $b \rightarrow B$ evolved from $\sqrt{s} = M_Z$ to 500 GeV (Nason & Oleari)

(Evolution of proton spectrum to UHE)

Decay of superheavy ($M \sim 10^{21}$ eV) metastable relic particles in the galactic halo has been suggested as a possible source of ultra-high energy cosmic rays.

Assuming no new physics, evolution of the proton spectrum from $\sqrt{s} = M_Z$ could give a sufficiently hard spectrum (N. Rubin)

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –