Electroweak Results from LEP2

Dave Charlton

School of Physics and Astronomy The University of Birmingham

Acknowledgements

The four LEP experiments ALEPH DELPHI L3 and OPAL provided all the results presented

Most of the averages presented here were made by

The LEP electroweak working group and its W mass, LEP2 ff and TGC subgroups

Thanks to all of them for their help

Outline

The LEP2 Programme

Fermion Pair Production

W⁺W⁻ Production & Decays

W Mass

Gauge Boson Self-Interactions

ZZ Production

Summary

The LEP2 Programme

So far 375 pb⁻¹ per experiment at LEP2 Expect another ≥200 pb⁻¹ before end of LEP (late 2000) Should surpass the canonical 500 pb⁻¹/expt

Almost all results are PRELIMINARY

Fermion Pair Production

Fermion Pair Cross-Sections

Lepton Pair Asymmetries

QED Tests at High Energy

$$e^+e^- \rightarrow \gamma\gamma(\gamma)$$

 $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Born} \pm \frac{\alpha^2 s}{2\Lambda_{\pm}^4} (1 + \cos^2\theta)$

 Λ_{+} > ~290 GeV at 95% CL

WW Production at LEP2

At \sqrt{s} =189 GeV, $\sigma_{WW} \approx 16 \text{ pb}$ $\Rightarrow \sim 4000 \text{ W}^+\text{W}^- / \text{ expt. for 250 pb}^{-1}$

> $BR(W \rightarrow q\overline{q}) \approx \frac{2}{3}$ BR(W \rightarrow ev, \mu v, \tau v) \approx \frac{1}{9} each

Observed events:

for 250 pb⁻¹ WW→qqqq $(\geq)4$ -jet events WW→qqlv 44% ~1800 2 jets, charged lepton, missing p WW→lvlv 10% ~400 2 energetic charged leptons

W⁺W⁻ Cross-Section

WW event selections: All final-states in all experiments

Multivariate discriminants give best selection performance

W Decay Branching Ratios

Test lepton universality in W decays

SM: 10.8%

Cf: CDF+DØ: BR(W \rightarrow ev) = 10.45 ± 0.19 %

Assuming lepton universality SM: 67.5% ($\alpha_s(M_W)=0.12$) BR(W \rightarrow qq) = 67.96 ± 0.41 % (LEP combined)

W Mass

WW \rightarrow qqqq and WW \rightarrow qqlv (A also lvlv@183GeV)

Excellent mass resolution comes from kinematic fit:

• Constrain total (E,p) to $(\sqrt{s},0)$ - needs E_{beam} from LEP

Reconstructed mass distributions

Standard fits: Γ_W constrained to SM relationship with M_W

W Width

May alternatively fit simultaneously Γ_W and M_W \rightarrow direct measurement of Γ_W

Measurements by D@183, L@172-189, O@172-183 GeV $\Gamma_W = 2.12 \pm 0.20 \text{ GeV}$ (DLO combined) Cf. CDF direct: 2.055 ± 0.125 GeV

preliminary

W Mass Uncertainties

At present: LEP2 M_W error: 56 MeV statistics 36 MeV systematics 43 MeV

 $q\overline{q}q\overline{q}$ and $q\overline{q}lv$ channels ~ equal statistical power

Principal errors:	(currently)
 qqlv channel: - Detector calibration - Errors dominated by MC statistics ⇒ likely to stay statistics limited 	20-60 MeV/expt ~40 MeV
 qqqq channel: Final-state interactions Others (fragmentation, background) a between experiments ⇒ systematic errors hard 	50-90 MeV also correlated 20-60 MeV
All channels: - LEP beam energy	17 MeV

Overall, we are aiming for a ~30 MeV error from LEP2

Final-State Interactions

Current studies exclude some poorer models, but others will be difficult even with full LEP2 data sample

Estimates of effect on M_W from this channel 50-90 MeV (but with a MC statistics component)

Systematic error O(**30 MeV**) may be possible, ultimately

M_W average: effect deweights this channel

Impact of W Mass Measurement

Triple Gauge Couplings WWγ, WWZ

General WWγ and WWZ interaction: **14** parameters

Apply C and P invariance & use low-energy constraints \rightarrow 3 parameters

Conventionally κ_{γ} , $g_1^{\ Z}$ and λ_{γ} , (1,1,0) in SM

Static W properties:

 $\mu_{W} = (e/2M_{W}) (1+\kappa_{\gamma}+\lambda_{\gamma})$ $q_{W} = (e/M_{W}^{2}) (\lambda_{\gamma}-\kappa_{\gamma})$

 Z/γ

Effects studied at LEP2 in

WW production

Single photon production

 \bullet is most constraining, but \bullet, \bullet constrain primarily WW γ

TGCs in e⁺e⁻→WW

Triple gauge couplings affect

- → total WW cross-section
- ➔ angular distribution of W⁻ production
- → helicity mixture of W's: analyse via W→f decay angles

Study W production and decay angle distributions

Combined WWγ, WWZ TGC Results

Alternatively, in terms of W_L/W_T production (L,O)

f (W_L in e⁺e⁻ \rightarrow W⁺W⁻) = 24.4 ± 4.8 ± 3 % (L3 189 GeV) SM: 26%

Evidence for W_L production now at 5σ level

First unambiguous observation of longitudinally polarized W's

Quartic Gauge Couplings

ZZ Production

Summary and Outlook

LEP is working superbly at high energy design energy, luminosity will be reached / passed

Many processes measured SM describes them all with flying colours ...so far

From around half the LEP2 data

M_W = 80.350 ± 0.056 GeV (Preliminary)

with scope for a final error close to 30 MeV

Precision M_W gives another probe of SM loop corrections the SM passes again

WWZ and WW γ couplings measured at few percent level

Plenty more data and results yet to come from LEP2 electroweak physics

Events at E_{cm} = 200 GeV

LEP has been taking data at \sqrt{s} =200 GeV since 2 August

