Precision EWK Measurements at Hadron Machines

Mark Lancaster

Lawrence Berkeley Lab + University College, London

- * Mw, Mt results from CDF/D0
- * sin $^{2}\theta_{w}$ from NuTev
- * EWK tests in space-like domain ZEUS/H1

- CDF/DØ : p \overline{p} @ \sqrt{S} = 1800 GeV
- NuTeV $: \langle E_{\nu} \rangle = 125 \,\, {
 m GeV}$ on Fe target.
- HERA : $e^{\pm}p @ \sqrt{S} = 300, 320 \text{ GeV}$

Tevatron Top Mass Measurement

- Most incisive EWK measurement at Tevatron.
- Predicted M_T has large uncertainty from Higgs RC. $\rightarrow \Delta M_T < 10 \text{ GeV} - \text{information on Higgs mass.}$
- Post 1995 discovery much progress in reducing mass error from $\sim 10~{\rm GeV} \rightarrow \sim 5~{\rm GeV}$

• In last year

- $-CDF/D\phi$: new results from di-lepton channel
- CDF : re-evaluated errors in all-hadronic channel
- These measurement incorporated into final values
- Final Tevatron average : accounting for correlations

lepton+jets

dilepton

Tevatron Top Mass Measurement

Channel	Pros	Cons	S/N (CDF)
Di Lepton	Low Background	Small Statistics	4
	Resolutions known	Under Constrained	
All Hadronic	Large Sample	Large Backgrounds	0.3
Lepton + jets	Reasonable Stats		2.5
	Reasonable Bgrds		

In total : CDF + D $\phi \sim 150$ signal events.

Tevatron Top Mass Measurement

- Most incisive EWK measurement at Tevatron.
- Predicted M_T has large uncertainty from Higgs RC. $\rightarrow \Delta M_T < 10 \text{ GeV} - \text{information on Higgs mass.}$
- Post 1995 discovery much progress in reducing mass error from $\sim 10 \text{ GeV} \rightarrow \sim 5 \text{ GeV}$
- In last year
 - $CDF/D\emptyset$: new results from di-lepton channel
 - CDF : re-evaluated errors in all-hadronic channel
 - These measurement incorporated into final values
 - Final Tevatron average : accounting for correlations

lepton+jets

dilepton

- Best measured quark mass : $\Delta M_t/M_t < 3\%$ Systematic Error dominated by uncertainties in :
 - Jet Energy Scale
 - MC effects : QCD radiation

Comparison with SM

From LEP-1 + LEP-II Mw EWK : $MT = 172^{+14}_{-11} \text{ GeV}$ From CDF/DØ Top sample : $MT = 174.3 \pm 5.1 \text{ GeV}$

- D \emptyset added high rapidity electron sample
- CDF added run-1B electron data and improved model for QCD radiation

Tevatron W Mass

• Z sample is central to W mass analysis

- Calibrate lepton p_T scale + resolution - Model QCD radiation + detector response

 $\Delta M_{\rm W}/M_{\rm W} \sim 0.08\%$ from Z statistics.

Tevatron W Mass

• Model W rapidity and p_T by fits to data.

Tevatron W Mass

Tevatron Mw uncertainties

Dominated by statistics of Z sample.

Error Source	DØ(C)	DØ(EC)	CDF(e)	$\mathrm{CDF}(\mu)$
Stat	70	105	65	100
Scale + Resolution [Zs]	70	185	80	90
$\mathbf{W} \ \mathbf{pT} + \not\!$	35	50	40	40
Other Exp.	40	60	5	30
Theory (PDFs, QED)	30	40	25	20

 $Mw~(Tevatron) = 80.450~\pm~0.063~GeV$

Other Tevatron EWK measurements

Large sample of W events also permit : $\mathbf{g}_{\tau}^{W}/\mathbf{g}_{e}^{W}$

NuTeV $\sin^2 \theta_w$ Measurement

• From NC and CC cross sections in ν N scattering.

Paschos-Wolfenestein relation :

$$\mathrm{R}^- = rac{\sigma_{\mathrm{NC}}^
u - \sigma_{\mathrm{NC}}^{\overline
u}}{\sigma_{\mathrm{CC}}^
u - \sigma_{\mathrm{CC}}^{\overline
u}} = rac{1}{2} - \sin^2 heta_{\mathrm{w}}$$

- Reduced systematic : sea quark contributions \sim cancel
- Requires separate ν nd $\overline{\nu}$ beams (SSQT system)

NuTeV $\sin^2 \theta_w$ Measurement

- NC,CC events discriminated by "event-length"
- ν_e contamination small

NuTeV	$\sin^2 \theta_{\rm w}$	Measurement
-------	-------------------------	-------------

Beam	Short	Long	R
$ u \ (< 0.1\% \ \overline{ u}) $	386k	919k	$0.4198 \pm 0.0008(\text{stat})$
$\overline{ u}~(< 0.2\%~ u)$	89k	210k	$0.4215 \pm 0.0017 \; (\mathrm{stat})$

 $\sin^2 \theta_W \text{ (on-shell)} = 0.2253 \pm 0.0021$ Mw = 80.26 ± 0.10 (stat) ± 0.05 (syst) GeV

• Error is statistics dominated

HERA EWK Measurements

• Probing EWK sector at 10^{-3} fm in space-like interactions • No anomalous Q^2 behaviour to high Q^2

• helicity structure : γ -Z interference.

x=0.13

Outlook

- All EWK results are presently dominated by statistical uncertainties : either directly or in the control samples.
- NuTev no futher runs planned : final $\Delta M_{\rm W} \sim 90~{
 m MeV}$
- HERA + Tevatron expect large increase in data sample
- HERA :
 - Luminosity upgrade : $150 \text{ pb}^{-1}/\text{year}/\text{exp}$.
 - Polarised e^- and e^+
 - Detector upgrades e.g Si detector.
 - $-\Delta M_{
 m W} < 100~{
 m MeV}$

• Tevatron :

- Lumi upgrade : > 2000 pb⁻¹/exp @ $\sqrt{S} = 2.0 \text{ TeV}$
- Significant detector/DAQ upgrades.

Outlook

- $M_T + M_W$ measurements will become systematics limited.
- W mass : statistical error ~ 10 MeV per exp.
 - Many of systematics e.g. energy scale, W pT scale with Z statistics
 - But e.g. QED uncertainties, PDFs do not.
- Expect $\Delta M_W \sim 20{-}40~{
 m MeV}$ from Tevatron
- W width : $\Delta \Gamma_{\rm W} \sim 20\text{--}40 \,\,\mathrm{MeV}$
- Top Mass
 - Statistical error $\sim 1 \text{ GeV}$ per experiment.
 - Systematics of QCD radiation and b-jet energy scale will dominate
 - Conservative estimate : $\Delta M_T \sim 2-3$ GeV per exp. CDF PRELIMINARY

Conclusions

- EWK results from hadron colliders complement those from e^+e^-
- Higher cross sections and \sqrt{S} allow greater precision in some measurements and some unique measurements e.g. top quark mass.
- Results in beautiful agreement with SM in a range of processes : qq, eq, ν q over a large range of Q^2 virtualities.
- Future is bright pre-LHC, expect significant results from Tevatron + HERA.

