Precision Electroweak Physics at the Z

Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University morris@jhu.edu

August 10, 1999

Introduction

The experimental study of the process $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ began 10 years ago and ended (data taking) just over 1 year ago. The first electroweak measurements performed at the Z(by the Mark II Collaboration) were presented at LP89 in this auditorium,

Quantity	LP89 (233 events)	LP99 (18M events)
$M_{oldsymbol{Z}}$ (GeV)	91.17 ± 0.18	91.1871 ± 0.0021
$\Gamma_{oldsymbol{Z}}$ (GeV)	$1.95^{+0.40}_{-0.30}$	2.4944 ± 0.0024
$N_{oldsymbol{ u}}$	3.0 ± 0.9	2.9835 ± 0.0083

The LP89 measurements were the best ew measurements available at the time! The last decade has seen remarkable improvements and represents the "Golden Age" of electroweak physics:

- Our best ew info has come from the study of the *Z* resonance.
- Many "Final" results are now being produced by the five Z-pole experiments: ALEPH, DELPHI, OPAL, L3, and SLD.
- This may be the last LP talk dedicated to electroweak results from the $\boldsymbol{Z}.$

The Z-Fermion Vertex

The coupling of the Z to a fermion-antifermion pair

is described by the following Lagrangian,

$$egin{aligned} \mathcal{L} &= & \left(rac{G_F M_Z^2}{2\sqrt{2}}
ight)^{1/2} \overline{\Psi}_f \gamma_\mu \left(oldsymbol{v}_f - oldsymbol{a}_f \gamma_5
ight) \Psi_f Z^\mu \ &= & \left(rac{G_F M_Z^2}{2\sqrt{2}}
ight)^{1/2} \overline{\Psi}_f \gamma_\mu \left[oldsymbol{g}_L^f \left(1 - \gamma_5
ight) + oldsymbol{g}_R^f \left(1 + \gamma_5
ight)
ight] \Psi_f Z^\mu \end{aligned}$$

where v_f and a_f are vector and axial vector coupling constants,

$$egin{array}{rcl} v_f &=& \sqrt{
ho_f} \left(2 I_3^f - 4 Q_f \sin^2 heta_f
ight) \ a_f &=& \sqrt{
ho_f} \left(2 I_3^f
ight). \end{array}$$

Note that ρ_f and $\sin^2 \theta_f$ incorporate electroweak radiative corrections,

The Z-Peak Cross Section

The cross section for the process $e^+e^-(P) o Z o far f$

is described by the following expression,

$$\frac{d\sigma_Z^f}{d\Omega} = \frac{9}{4(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2} \leftarrow \text{Breit Wigner Res}$$
$$\times \left\{ \underbrace{(1 + \cos^2 \theta)[1 - PA_e]}_{P \text{ modulates } c - even} + \underbrace{2\cos \theta A_f[-P + A_e]}_{P \text{ increases } c - odd} \right\}$$

where $\Gamma_{f\bar{f}}$ is the partial width for $Z \to f\bar{f}$ and A_f is the left-right coupling constant asymmetry,

$$egin{array}{rcl} \Gamma_{far{f}} &=& N_c \cdot rac{G_F M_Z^3}{24 \pi \sqrt{2}} \left(v_f^2 + a_f^2
ight) \ A_f &=& rac{2 v_f a_f}{v_f^2 + a_f^2} = rac{(g_L^f)^2 - (g_R^f)^2}{(g_L^f)^2 + (g_R^f)^2}. \end{array}$$

The small size of v_{ℓ}/a_{ℓ} (~ 0.08) makes the leptonic coupling asymmetries A_{ℓ} particularly sensitive to electroweak vacuum polarization corrections. Usually parameterized in terms of $\sin^2 \theta_W^{eff} = \sin^2 \theta_e$ (assume lepton universality),

$$A_\ell = rac{2(1-4\sin^2 heta {}^{\mathrm eff}_W)}{1+(1-4\sin^2 heta {}^{\mathrm eff}_W)^2} \qquad \delta A_\ell \simeq -8\delta \sin^2 heta {}^{\mathrm eff}_W$$

Z-Pole Electroweak Observables

Real experiments measure the processes $e^+e^- \rightarrow Z, \gamma \rightarrow f\bar{f}$ (and the interference term),

$$rac{d\sigma^f_{obs}}{d\Omega}(s) = rac{d\sigma^f_Z}{d\Omega}(s) + rac{d\sigma^f_{Z\gamma}}{d\Omega}(s) + rac{d\sigma^f_\gamma}{d\Omega}(s).$$

The presence of initial state radiation smears the center-of-mass energy which can be represented in terms of electron structure functions,

$$rac{d\sigma^f_{obs}}{d\Omega}(s) = \int dx_1 dx_2 D_e(x_1,s) D_e(x_2,s) rac{d\sigma^f_{obs}}{d\Omega}(sx_1x_2)$$

It is necessary to correct all measurements for energy smearing and for $Z\gamma$ interference (and pure γ -exchange). The following obervables are extracted Z-peak data:

1. The Line Shape Parameters: (measured by scanning the peak)

• M_Z , Γ_Z , $\sigma^0_{had} = 12\pi\Gamma_{ee}\Gamma_{had}/(M_Z^2\Gamma_Z^2)$

2. Branching Ratios:

• $R_\ell = \Gamma_{had}/\Gamma_\ell$, $R_b = \Gamma_{bb}/\Gamma_{had}$, $R_c = \Gamma_{cc}/\Gamma_{had}$

3. Unpolarized Formward-Backward Asymmetries:

$$A^f_{FB} = rac{\sigma^f_F - \sigma^f_B}{\sigma^f_F + \sigma^f_B} = 0.75 A_e A_f, \quad f = \ell, b, c$$

4. Left-Right Asymmetry:

$$A_{LR}=rac{\sigma^f(-|P|)-\sigma^f(+|P|)}{\sigma^f(-|P|)+\sigma^f(+|P|)}=PA_e, \quad f
eq e$$

5. au Polarization: (A_{LR} with final state au's)

$$egin{aligned} \mathcal{P}_{ au}(\cos heta) &= & -rac{A_{ au}(1+\cos^2 heta)+2A_e\cos heta}{1+\cos^2 heta+2A_{ au}A_e\cos heta} \ \overline{\mathcal{P}}_{ au} &= & -A_{ au} \end{aligned}$$

6. Left-Right Forward-Backward Asymmetries:

The Resonance Parameters

Summer 1999: all four LEP experiments have updated their Z resonance parameter results (ALEPH's are now final).

The resonance parameters M_Z , Γ_Z , σ_{had}^0 , R_ℓ are measured with final state hadronic and leptonic samples collected during scans of the Z peak. Since the leptonic forward-backward asymmetries are sensitive functions of \sqrt{s} ,

the A_{FB}^{ℓ} are extracted from a simultaneous fit to hadronic and leptonic lineshape data.

Event sample consists of $15.5 \times 10^6 \ Z \rightarrow q\bar{q}$ and $1.7 \times 10^6 \ Z \rightarrow \ell^+ \ell^-$ events collected at \sim 7 energies from 1990 to 1995. The

 $Z\gamma$ and pure γ cross sections are fixed to MSM values and the data fit to radiatively-corrected lineshape functions [3rd-order corrections now used],

The leptonic parameters are determined separately for each lepton species (9 lineshape parameters) and assuming lepton universality (5 parameters).

Parameter	Average Value	
$m{m}_{ m Z}({ m GeV})$	91.1871 ± 0.0021	
$\Gamma_{ m Z}({ m GeV})$	2.4944 ± 0.0024	
${m \sigma}_{ m h}^{0}({ m nb})$	41.544 ± 0.037	
$oldsymbol{R}_{ m e}$	20.803 ± 0.049	
$oldsymbol{R}_{\mu}$	20.786 ± 0.033	
$R_{ au}$	20.764 ± 0.045	
$oldsymbol{A}_{ ext{FB}}^{0, ext{e}}$	0.0145 ± 0.0024	
$oldsymbol{A}_{ ext{FB}}^{oldsymbol{0},oldsymbol{\mu}}$	0.0167 ± 0.0013	
$oldsymbol{A}_{ ext{FB}}^{oldsymbol{ ilde{0}},oldsymbol{ au}}$	0.0188 ± 0.0017	
R_ℓ	20.768 ± 0.024	
$oldsymbol{A}_{ ext{FB}}^{0,oldsymbol{\ell}}$	0.01701 ± 0.00095	

LEP: 4 Expt Average

• Systematic errors:

- Event Selection ± 0.04 -0.1% $(q \bar{q})$ and ± 0.1 -0.7% $(\ell^+ \ell^-)$
- Luminosity ± 0.033 -0.09% experimental, ± 0.054 -0.06% Bhabha Cross Section [B. Ward et al., PL B450, 262 (1999)]
- Beam Energy ± 1.7 MeV on M_Z and ± 1.2 MeV on Γ_Z
- QED Corrections $\pm 0.02\%$ on $\sigma_{
 m h}^0$ and ± 0.5 MeV on $m_{
 m Z}$, $\Gamma_{
 m Z}$
- Note $+0.9\sigma$ shift in $\sigma_{\rm h}^0$:
 - +20 pb from $O(lpha^3)$ radiative corrections
 - +10 pb from new ZFITTER version
- Note that M_Z is limited by energy scale uncertainty

Total width $\Gamma_{\mathbf{Z}}$

Tau Polarization

The LEP Collaborations determine A_{τ} and A_{e} from measurements of $\mathcal{P}_{\tau}(\cos \theta)$. The final state τ -polarization is determined from the 5 decay modes: $\tau^{\pm} \to \pi^{\pm} \nu$, $\rho^{\pm} \nu$, $a_{1}^{\pm} \nu$, $e^{\pm} \nu \bar{\nu}$, $\mu^{\pm} \nu \bar{\nu}$. Since the τ decays via a pure *V*-*A* current, each mode has a polarization-dependent decay distribution in laboratory variables. For example, the center-of-mass angular distribution of π^{-} from the decay of a spin-polarized τ^{-} is very asymmetric,

$$rac{1}{\Gamma} rac{d\Gamma}{d\cos heta^*} = \left(1 - \mathcal{P}_ au oldsymbol{Q}_ au\cos heta^*
ight)/2.$$

In the terms of scaled energy in the laboratory frame $x=E_{\pi}/E_b$, the decay distribution is

$$rac{1}{\Gamma}rac{d\Gamma}{dx} = 1 - \mathcal{P}_ au Q_ au \left(2x-1
ight) = A(x) + \mathcal{P}_ au B(x).$$

The laboratory decay distributions of all 5 final states can be represented in the same form,

$$rac{1}{\Gamma}rac{d\Gamma}{dx^N}=A(x_1...x_N)+\mathcal{P}_ au B(x_1...x_N),$$

where N = 1, 3, 6 for the $\ell \nu \bar{\nu}$, $\rho \nu$, $a_1 \nu$ final states. \mathcal{P}_{τ} is extracted by fitting the decay distributions to the data.

The statistical precision obtainable with a sample of N_{dec} decays for each final state can be parameterized as $\delta \mathcal{P}_{\tau} = a_p/\sqrt{N_{dec}}$ where

Final State	eνīν	$\mu uar{ u}$	πu	ρν	$oldsymbol{a}_1oldsymbol{ u}$
Branching Ratio (%)	18	18	12	24	8
Acceptance	0.4	0.7	0.6	0.5	0.5
Analyzing Power $oldsymbol{a}_p$	5	5	1.8	2.3	3.1
Relative Precision	2.7	2.1	1.0	1.0	2.2

Most of the information comes from the $\pi\nu$ and $\rho\nu$ channels. The 5-channel averages yield the following values for A_{τ} and A_{e} :

Experiment		$\mathcal{A}_{ au}$
ALEPH	(90 - 95), final	$0.1452 \pm 0.00052 \pm 0.0032$
DELPHI	(90 - 95), final 99	$0.1359 \pm 0.0079 \pm 0.0055$
L3	(90 - 95), final	$0.1476 \pm 0.0088 \pm 0.0062$
OPAL	(90 - 94), final	$0.1340 \pm 0.0090 \pm 0.0100$
LEP Average		0.1425 ± 0.0044
$\chi^2/{ m dof}$		1.3/3
Experiment		$\mathcal{A}_{ ext{e}}$
Experiment ALEPH	(90 - 95), final	$egin{array}{c} {\cal A}_{ m e} \ 0.1505 \pm 0.0069 \pm 0.0010 \end{array}$
Experiment ALEPH DELPHI	(90 - 95), final (90 - 94), final 99	$egin{array}{c} \mathcal{A}_{ m e} \ 0.1505 \pm 0.0069 \pm 0.0010 \ 0.1382 \pm 0.0116 \pm 0.0005 \end{array}$
Experiment ALEPH DELPHI L3	(90 - 95), final (90 - 94), final 99 (90 - 95), final	$\begin{array}{c} \mathcal{A}_{\rm e} \\ 0.1505 \pm 0.0069 \pm 0.0010 \\ 0.1382 \pm 0.0116 \pm 0.0005 \\ 0.1678 \pm 0.0127 \pm 0.0030 \end{array}$
Experiment ALEPH DELPHI L3 OPAL	(90 - 95), final (90 - 94), final 99 (90 - 95), final (90 - 94), final	$\begin{array}{c} {\cal A}_{\rm e} \\ 0.1505 \pm 0.0069 \pm 0.0010 \\ 0.1382 \pm 0.0116 \pm 0.0005 \\ 0.1678 \pm 0.0127 \pm 0.0030 \\ 0.1290 \pm 0.0140 \pm 0.0050 \end{array}$
Experiment ALEPH DELPHI L3 OPAL LEP Average	(90 - 95), final (90 - 94), final 99 (90 - 95), final (90 - 94), final	$\begin{array}{c} {\cal A}_{\rm e} \\ \\ 0.1505 \pm 0.0069 \pm 0.0010 \\ 0.1382 \pm 0.0116 \pm 0.0005 \\ 0.1678 \pm 0.0127 \pm 0.0030 \\ 0.1290 \pm 0.0140 \pm 0.0050 \\ \end{array}$

The systematic uncertainties are assumed to be uncorrelated in the averaging procedure.

A_{LR} Measurements

$$egin{aligned} A_{LR} = rac{1}{\mathcal{P}_e} rac{N_Z(L) - N_Z(R)}{N_Z(L) + N_Z(R)} = rac{1}{\mathcal{P}_e} A_m \end{aligned}$$

Helicity of the SLC e^- beam chosen pseudo-randomly pulse-to-pulse (to excellent approximation, $\mathcal{L}_L = \mathcal{L}_R$). To measure A_{LR} :

- 1. Count Z hadronic events produced with left- and right-handed beams (excluding final state e^+e^- pairs), form asymmetry A_m .
- 2. Measure the beam polarization \mathcal{P}_i associated with each Z and form the luminosity-weighted average,

$$\mathcal{P}_e = (1+oldsymbol{\xi}) rac{1}{N_Z} \sum_i^{N_Z} \mathcal{P}_i$$

where ξ is a small correction (0.001-0.002) for chromatic and beam transport effects.

- 3. Correct for residual background to Z sample and for residual left-right asymmetries in luminosity, polarization, beam energy, etc. Correction is at $\Delta A_{LR}/A_{LR} \sim 10^{-3}$ level
- 4. Correct for electroweak interference to extract $A_{LR}^0 = A_e$.

New: final result based upon a sample of 343K events collected in 1997/8 run.

The 1997/8 run of the SLC was, by far, its best:

- 350K events produced with 73% electron polarization
- By the end of the run, SLC instaneous luminosity was approaching the design value
 - 5400 Z-events produced in last 24 hours

1992 - 1998 SLD Polarized Beam Running

Vanda 6/22/98

The SLD experiment finished with approximately 555K events,

Year	Number of Z	\mathcal{P}_{e}	$\delta \mathcal{P}_e/\mathcal{P}_e$
1992	11K	$0.224 {\pm} 0.006$	2.7%
1993	50K	$0.626 {\pm} 0.012$	1.7%
1994/5	100K	$0.772 {\pm} 0.005$	0.7%
1996	50K	$0.765 {\pm} 0.004$	0.7%
1997/8	343K	$0.729 {\pm} 0.004$	0.5%

The 1997/8 result incorporates a number of improvements and checks:

- Polarimetery:
 - Two additional independent Compton polarimeters measure backscattered photons → reduce calibration uncertainty
 - Polarimeter operated with interspersed high/low background running \rightarrow reduce linearity uncertainty
 - Polarimeter syst error $\delta \mathcal{P}_e/\mathcal{P}_e = 0.5\%$ is largest
- Center-of-mass collision energy:
 - Scan of Z resonance done to confirm energy scale $\rightarrow \Delta E_{cm} = -46 \pm 25 \text{ MeV}$
 - Energy uncertainty leads to $\delta A_{LR}^0 / A_{LR}^0 = 0.4\%$
- Positron Polarization:
 - Use Møller polarimeter in Endstation A to measure e^+ polarization $\rightarrow \mathcal{P}_p = -0.02 \pm 0.07\%$

After application of the interference corrections, the following results are obtained:

Year	$oldsymbol{A}_{LR}^0$
1992	$0.100 \pm 0.044 \pm 0.004$
1993	$0.1656 \pm 0.0071 \pm 0.0028$
1994/5	$0.15116 \pm 0.00421 \pm 0.00111$
1996	$0.15703 \pm 0.00573 \pm 0.00111$
1997/8	$0.14904 \pm 0.00240 \pm 0.00097$
Total	0.15108 ± 0.00218

Note that the total statistical error is still about twice as large as the systematic uncertainty. A_{LR}^0 is entirely equivalent to the effective weak mixing angle,

 $\sin^2 heta_W^{{
m e}ff} = 0.23101 \pm 0.00028$

In terms of $\sin^2 heta_W^{\mathrm eff}$, the six measurements are,

Polarized Forward-Backward Asymmetries

The left-right forward-backward asymmetries \tilde{A}_{FB}^{f} allow the extraction of the Final State coupling asymmetries A_{f} . For $f \neq e$, A_{f} and A_{e} are extracted from fits to the polar angle distributions,

$$rac{d\sigma}{d\cos heta} \propto (1-\mathcal{P}_eA_e)\left(1+\cos^2 heta
ight)+2A_f\left(A_e-\mathcal{P}_e
ight)\cos heta$$

(Final state e^+e^- events must be fit to a more sophisticated expression that includes t-channel effects.)

The SLD Collaboration has used this technique to measure A_e , A_μ , and A_τ from samples of 15K e^+e^- , 12K $\mu^+\mu^-$, and 12K $\tau^+\tau^-$ events.

- Tests lepton universality: $A_e = 0.1558 \pm 0.0064$ $A_\mu = 0.137 \pm 0.016$ $A_\tau = 0.142 \pm 0.016$
- Provides another (reasonably accurate) determination of A_{ℓ} : $A_{\ell} = 0.1523 \pm 0.0057$

These results can be compared directly with measurements of A_e and A_{τ} coming from tau-polarization measurements and indirectly with measurements of A_{μ} coming from A_{FB}^{μ} ,

- $ilde{A}^{\mu}_{FB}$ the best single measurement of A_{μ}
- Consistent with lepton universality (χ^2 /dof=3.5/2)

R_b , R_c Measurements

The measurement of R_b and R_c is conceptually simple. One applies some tagging criteria to a sample of hadronic Z decays, measures the fraction events which satisfy the criteria, and corrects for the efficiency of the criteria. Unfortunately, it is difficult to determine the efficiency of a tagging procedure at the desired <1% level and a more sophisticated double-tag approach is used to perform the most precise measurements:

- Select clean sample of hadronic events
- Apply b-tag/c-tag (exclusive of each other) in each thrust hemisphere
- Determine rate of single (b_s, c_s) , double (b_d, c_d) , and mixed (m) tags

$$egin{aligned} b_s &= arepsilon_b R_b + arepsilon_c R_c + arepsilon_{uds} \left(1 - R_b - R_c
ight) \ b_d &= arepsilon_b^d R_b + arepsilon_c^d R_c + arepsilon_{uds} \left(1 - R_b - R_c
ight) \ c_s &= \eta_b R_b + \eta_c R_c + \eta_{uds} \left(1 - R_b - R_c
ight) \ c_d &= \eta_b^d R_b + \eta_c^d R_c + \eta_{uds}^d \left(1 - R_b - R_c
ight) \ m &= 2 \left[arepsilon_b \eta_b R_b + arepsilon_c \eta_c R_c + arepsilon_{uds} \eta_{uds} \left(1 - R_b - R_c
ight)
ight] \end{aligned}$$

- Correlations: $arepsilon^d = arepsilon^2 + \lambda$, $\eta^d = \eta^2 + \lambda'$, $(\lambda_{uds} = \lambda'_{uds} = 0)$
- R_b : take R_c SM value; ε_c , ε_{uds} , λ_b from MC; \rightarrow solve 2 eqs for R_b , ε_b
- R_c : η_{uds} , λ'_b , λ'_c from MC; \rightarrow solve 5 eqs for R_b , η_b , ε_b , R_c , η_c

The large efficiencies (which would dominate the systematic uncertainty) are determined from the data themselves.

A number of techniques are used to tag final-state b and c jets:

- 1. *b*-Jet Tags:
 - (a) Large P, P_T leptons
 - (b) Event Shapes
 - (c) Lifetime Tags
 - i. Traditional (require large impact parameter tracks or poor fit to single vertex hypothesis)
 - ii. Topological (reconstruct secondary or tertiary vertices): new tags are enhanced by requirements on vertex mass, energy mass requirement greatly improves purity

- 2. *c*-Jet Tags:
 - (a) Large P, P_T leptons (usually in conjunction with a *b*-quark analysis)
 - (b) Reconstruct D/D^* Mesons (inclusively or exclusively)
 - (c) Topological Lifetime + Vertex Mass Tag + Vertex Momentum

Several measurements have been updated recently:

- R_b: DELPHI has very precise new result, SLD has update
- R_c: DELPHI and SLD Updates

 $\Gamma_{\rm b}/\Gamma_{\rm had}$

$\Gamma_{\rm c}/\Gamma_{\rm had}$

F-B Asymmetries with *b***-**, *c***-**, and *s*-quarks

In order to measure the angular distributions of $b\bar{b}$, $c\bar{c}$, and $s\bar{s}$ final states it is necessary to:

- **1.** Tag the event flavor
- 2. Measure the polar angle of the thrust axis
- **3.** Identify which hemisphere contains the quark (as opposed to antiquark)

Tagging and Q/\bar{Q} separation is achieved via several techniques:

- **1.** *b***-Events:** Tagging discussed in R_b section, b/\bar{b} separation:
 - (a) Large P/P_T lepton-tagged events use the sign of the lepton to tag q/\bar{q}
 - (b) Jet Charge use momentum-weighted charge sums

$$Q_{F}^{f} = \frac{\sum_{i}^{\vec{p}_{i} \cdot \vec{T} > 0} |\vec{p}_{i} \cdot \vec{T}|^{\kappa} q_{i}}{\sum_{i}^{\vec{p}_{i} \cdot \vec{T} > 0} |\vec{p}_{i} \cdot \vec{T}|^{\kappa}} \qquad \qquad Q_{B}^{f} = \frac{\sum_{i}^{\vec{p}_{i} \cdot \vec{T} < 0} |\vec{p}_{i} \cdot \vec{T}|^{\kappa} q_{i}}{\sum_{i}^{\vec{p}_{i} \cdot \vec{T} < 0} |\vec{p}_{i} \cdot \vec{T}|^{\kappa}}$$

to form the forward-backward charge asymmetry,

$$Q^f_{FB} = Q^f_F - Q^f_B = \delta_f A^f_{FB},$$

where the hemisphere charge separation δ_f is extractable from the sums and differences of the thrust hemisphere jet charges. Self-calibrating except for hemisphere correlation effects.

- (c) K^{\pm} Sum Use charge of the K^{\pm} from the $b \rightarrow c \rightarrow s$ cascade to separate b/\bar{b} (sum the K^{\pm} charges in each hemisphere). Self-calibrates
- (d) **Topological Vertex Charge** total charge of tracks associated with a reconstructed secondary vertex. **Self-calibrates**

- 2. c-Events: Tagging discussed in R_c section, c/\bar{c} separation:
 - (a) Large P/P_T lepton-tagged events use the sign of the lepton to tag q/\bar{q}
 - (b) D/D^* -tagged Events use charge of reconstructed D^{\pm}
 - (c) **Topological Vertex Charge** total charge of tracks associated with a reconstructed secondary vertex
 - (d) K^{\pm} Sum Use charge of the K^{\pm} from the $c \rightarrow s$ cascade to separate c/\bar{c} (sum the K^{\pm} charges in each hemisphere).
- **3.** *s*-Events: (SLD Update) Tagging and sign selection done as follows:
 - Select events with no detached vertices anti-tags $b\bar{b}$ and $c\bar{c}$ events.
 - Require fast strange particles K^\pm with p>9 GeV or K^0_s , Λ , $\bar{\Lambda}$ with p>5 GeV
 - Require tag in both hemispheres ≥ 1 signed-hemisphere $(K^{\pm}, \Lambda/\bar{\Lambda})$, take largest momentum tag in hemisphere
 - Moderate Purity 50% to 73% depending upon final state
 - Analyzing power self-calibrates from hemisphere correlations

Unpolarized $Q\bar{Q}$ Asymmetries

Fitting the angular distributions (or measuring Q_{FB} as a function of $\cos \theta$) correcting for the charge-signing analyzing powers, backgrounds, B^0 - \overline{B}^0 mixing, QCD effects, and electroweak interference yields,

The unpolarized asymmetries depend upon A_e ,

$$A^f_{FB}=0.75A_eA_f,$$

and are quite sensitive to the effective weak mixing angle (the quark asymmetries A_q are very insensitive to it). They are used to determine $\sin^2 \theta_W^{eff}$. In order to isolate the final state coupling asymmetries A_b and A_c , it is necessary to divide the FB asymmetries by an average value of A_ℓ determined from A_{FB}^ℓ , \mathcal{P}_{τ} , and A_{LR} .

Polarized $Q\bar{Q}$ Asymmetries

The left-right forward-backward asymmetries measured by SLD directly isolate the final state coupling asymmetries. Using similar techniques to tag and sign identify $b\bar{b}$ and $c\bar{c}$ final states, the parameters A_b and A_c are measured directly,

LEP Measurements: $A_c = 4 A^{0,c_{FB}} / 3 A_e$ Using $A_e=0.1496\pm0.0016$ (Combine SLD A_{LR} and LEP A_l)

Extracted Parameters

The lineshape parameters, leptonic forward-backward asymmetries, and τ -polarization are used (by the LEP EWWG) to extract a number of parameters. Partial decays widths to leptons, hadrons, and invisible particles are,

Without Lepton Universality		
$\Gamma_{ m ee}$	(MeV)	$83.90 {\pm} 0.12$
$\Gamma_{\mu\mu}$	(MeV)	$83.96{\pm}0.18$
$\Gamma_{ au au}$	(MeV)	$84.05 {\pm} 0.22$
With Lepton Universality		
$\Gamma_{\ell\ell}$	(MeV)	$83.96 {\pm} 0.09$
$\Gamma_{ m had}$	(MeV)	$1743.9{\pm}2.0$
$\mathbf{\Gamma}_{ ext{inv}}$	(MeV)	$498.8{\pm}1.5$

The ratio of the invisible and leptonic widths,

 $\Gamma_{\mathrm{inv}}/\Gamma_{\ell\ell}=5.941\pm0.016,$

can be divided by the MSM value for $\Gamma_{\nu\nu}/\Gamma_{\ell\ell}$ (1.9912±0.0012) to yield the number of neutrinos,

$$N_
u = 2.9835 \pm 0.0083,$$

or converted into a 95% upper limit on additional width $\Delta\Gamma_{
m inv}$ (assuming $N_{
u}=3$),

$$\Delta \Gamma_{\text{inv}} < 2.0 \text{ MeV}.$$

The measurements of $\Gamma_{\ell\ell}$, A^ℓ_{FB} , and A_ℓ can be used to unfold values of $g_{V\ell}=v_\ell/2$ and $g_{A\ell}=a_\ell/2$,

$$egin{array}{rcl} \displaystyle rac{g_A^\mu}{g_A^e} &=& 1.0001 \pm 0.0014 & \ \displaystyle rac{g_V^\mu}{g_V^e} = 0.981 \pm 0.082 \ \displaystyle rac{g_A^\tau}{g_A^e} &=& 1.0019 \pm 0.0015 & \ \displaystyle rac{g_V^\mu}{g_V^e} = 0.964 \pm 0.032 \end{array}$$

All of these quantities and the hadronic forward-backward asymmetries (assuming that there are no anomalous vertex corrections) can be used to extract the effective weak mixing angle,

- $P(\chi^2) = 0.065 \rightarrow \text{OK}$, but not terrific
- The leptonic measurements and hadronic measurements agree well within their groups
- The two most precise measurements, A_{LR} and A^b_{FB} , deviate by 3.0 σ

Is there something going on???

Three possilities:

- **1.** Unknown systematic effects distort some or all of the results.
- 2. It's just a statistical fluctuation.
- 3. It's new physics ...

If the *b*-quark coupling asymmetry is anomalous (A_b deviates from 0.935), it is possible to reconcile the discrepancy. Fit to A_ℓ , A_b and $A^b_{FB} = 0.75 A_\ell A_b$,

The best fit for A_b deviates from the MSM by 2.7 σ ! The possibility that new physics might be affecting the $Zb\bar{b}$ couplings has been studied by M. Chanowitz (hep-ph/9905478): \rightarrow may be observable consequences in the study of flavor-changing neutral currents, rare K decays.

Consistency With the Standard Model

We can compare the best Z-pole electroweak measurements with others and the Standard Model using the "Model-Independent" S-T parameters of Peskin and Takeuchi [PRL 65, 964 (1990)]. 14 EW measurements are fit to S, T, α_s , $\Delta \alpha_{had}^5$ (constrained to $277.5 \pm 1.7 \times 10^{-4}$). The resulting confidence region can be used to find an upper limit for m_H by including $m_t = 174.3 \pm 5.1$ GeV as a constraint,

- $\sin^2 \theta_W^{\mathrm{e}ff}$ is the most precisely-measured observable
- Global M_W is now number 2, close to Γ_Z
- Data agree well with Standard Model → "light" Higgs favored

We can perform the analysis but excluding the hadronic determinations of $\sin^2 \theta_W^{eff}$. The picture changes a little bit,

- $\sin^2 heta_W^{\mathrm eff}$ is still the most precisely-measured observable
- Data with Standard Model is becoming marginal:
 - S disagreement with SMS is approaching the 1-sided 95% level (1.6 σ)
 - Very light Higgs mass preferred (central value is 42 GeV)

Conclusions

- The era of Z-pole electroweak physics has come to an end
- Decade has been a "Golden Age" for precise electroweak meas:
 - M_Z is measured to 2.2×10^{-5} !!! (used as input)
 - Γ_Z is measured to 10^{-3} !!!
 - $\sin^2 \theta_W^{\mathrm{e}ff}$ determines most of what we know about loop-level processes
 - Three light left-handed neutrinos and NO additional invisible width
- Generally good agreement with MSM, but ...
- Still some lingering inconsistencies with leptonic and hadronic determinations of $\sin^2 \theta_W^{eff}$
 - Has consequence for interpretation in terms of MSM
 - A_b is anomalous by 2.7σ
- We are leaving the Z a bit too soon.....

