TAU PHYSICS

A. Pich

IFIC, Univ. Valencia – CSIC

- Lepton Universality
- Lorentz Structure
- Neutral Currents
- The ν_{τ} Mass
- Lepton Number Violation
- Hadronic Decays
- QCD Tests

A large amount of good experimental work [Proc. TAU'98, Nucl. Phys. (PS) 76 (1999)]

LP'99, Stanford, August 9-14, 1999

 $d_{\theta} \equiv \cos \theta_C \, d + \sin \theta_C \, s$

$$B_{l} \equiv Br(\tau^{-} \rightarrow \nu_{\tau} \ l^{-} \bar{\nu}_{l}) \approx \frac{1}{5} = 20\%$$
$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \rightarrow \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \rightarrow \nu_{\tau} \ e^{-} \bar{\nu}_{e})} \approx N_{C} = 3$$

 $au_{ au}$ = (290.77 \pm 0.99) fs

 $B_e = (17.791 \pm 0.054)\%$; $B_\mu = (17.333 \pm 0.054)\%$

$$R_{\tau}^B \equiv \frac{1 - B_e - B_{\mu}}{B_e} = 3.647 \pm 0.014$$

 $R_{\tau}^{\Gamma} \equiv \frac{\Gamma_{\tau} - \Gamma_{\tau \to e} - \Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}} = 3.640 \pm 0.020$

 $R_{\tau} = 3.644 \pm 0.012$

$$\Gamma(\tau^{-} \to \nu_{\tau} l^{-} \bar{\nu}_{\tau}) = \frac{G_{F}^{2} m_{\tau}^{5}}{192 \pi^{3}} f(m_{l}^{2}/m_{\tau}^{2}) r_{EW}$$

$$f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x, \qquad r_{EW} \approx 0.996$$

$$m_{\tau} = 1777.05^{+0.29}_{-0.26} \text{ MeV}, \qquad G_{F} = 1.16637 (1) \times 10^{-5} \text{ GeV}^{-2}$$

$$W$$

$$B_{e} = \frac{B_{\mu}}{0.972564 \pm 0.000010} = \frac{\tau_{\tau}}{(1632.1 \pm 1.4) \times 10^{-15} \text{ S}}$$

CHARGED-CURRENT UNIVERSALITY

	$ g_ au/g_e $
$B_{ au ightarrow \mu} \ au_{\mu}/ au_{ au}$	1.0002 ± 0.0023
$\sigma \cdot B_{W \to \tau/e} (p\bar{p})$	0.987 ± 0.025
$B_{W \to \tau/e}$ (LEP2)	1.010 ± 0.019

05/07/1999

Tampere 99 - Preliminary - [161-189] GeV

W Leptonic Branching Ratios

CDF + D0: $B(W \to e\nu) = (10.43 \pm 0.17)\%$

LORENTZ STRUCTURE

$$l^- \rightarrow \nu_l \, l'^- \bar{\nu}_{l'} \qquad (\mu \rightarrow e, \ \tau \rightarrow \mu, \ \tau \rightarrow e)$$

$$\mathcal{H} = 4 \frac{G_{l'l}}{\sqrt{2}} \sum_{n,\epsilon,\omega} g_{\epsilon\,\omega}^n \left[\overline{l'_{\epsilon}} \,\Gamma^n \,(\nu_{l'})_{\sigma} \right] \left[\overline{(\nu_l)_{\lambda}} \,\Gamma_n \,l_{\omega} \right]$$

 $\Gamma^S = I \quad ; \quad \Gamma^V = \gamma^\mu \quad ; \quad \Gamma^T = \sigma^{\mu\nu}/\sqrt{2} \quad ; \quad \epsilon, \omega, \sigma, \lambda = L, R$

10 complex couplings $g_{\epsilon\omega}^n$ for each decay 3×19 real parameters (1 arbitrary phase)

Normalization:

$$\Gamma \propto \frac{1}{4} \left(|g_{RR}^{S}|^{2} + |g_{RL}^{S}|^{2} + |g_{LR}^{S}|^{2} + |g_{LL}^{S}|^{2} \right) + 3 \left(|g_{RL}^{T}|^{2} + |g_{LR}^{T}|^{2} \right) \\ + \left(|g_{RR}^{V}|^{2} + |g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} + |g_{LL}^{V}|^{2} \right)$$

 \equiv 1 \equiv $Q_{LL} + Q_{LR} + Q_{RL} + Q_{RR}$

<u>Standard Model:</u> $G_{l'l} = G_F$; $g_{LL}^V = 1$

<u>*l'* Spectrum:</u> Michel Parameters $(\delta, \eta, \xi, \delta)$

 $Q_{l_R} \equiv Q_{RR} + Q_{LR} = \frac{1}{2} \left[1 + \frac{\xi}{3} - \frac{16}{9} \xi \delta \right]$

MICHEL PARAMETERS

World Averages (I. Boyko) ALEPH, ARGUS, CLEO, DELPHI, L3, OPAL, SLD

Upper Limits on $\tilde{g}^n_{\epsilon\,\omega}\equiv g^n_{\epsilon\,\omega}/N^n$ (I. Boyko)

 $N^n \equiv \max(g^n_{\epsilon\omega})$ $[N^S = 2, N^V = 1, N^T = 1/\sqrt{3}]$

 e/μ Universality assumed

(90% CL) Red circles = μ -decay limits

 $Q_{ au_R} < 0.032$ $\left[Q_{ au_R}^{ au o e} < 0.054 \; ; \; Q_{ au_R}^{ au o \mu} < 0.047
ight]$

 $au^- o
u_ au \, l^- ar
u_l \, \gamma$

$\mathsf{CLEO} \quad (E_{\gamma} > 10 \; \mathsf{MeV})$

	Data	MC
$B_{\mu\gamma}$ (×10 ⁻³)	$3.61 \pm 0.16 \pm 0.35$	3.68 ± 0.02
$B_{e\gamma}$ (×10 ⁻²)	$1.75 \pm 0.06 \pm 0.17$	1.86 ± 0.01
${\sf B}_{e\gamma}/{\sf B}_{\mu\gamma}$	$4.85 \pm 0.27 \pm 0.57$	5.05 ± 0.04

Good agreement with Standard Model predictions First direct measurement of $Br(\tau^- \rightarrow \nu_\tau e^- \bar{\nu}_e \gamma)$

For $E_{\gamma} > 20$ MeV: OPAL 96 : $B_{\mu\gamma} = (3.0 \pm 0.4 \pm 0.5) \times 10^{-3}$ CLEO 99 : $B_{\mu\gamma} = (3.04 \pm 0.14 \pm 0.30) \times 10^{-3}$

No useful limits on ξ' $[Q_{\tau \to l_R} = \frac{1}{2}(1 - \xi')]$

NEUTRAL CURRENTS

$$\frac{Z \to l^{-}l^{+}}{|v_{l}|^{2}} = \frac{3}{4}A_{e}A_{l} ; \quad \mathcal{A}_{Pol}^{l} = -A_{l} ; \quad \mathcal{A}_{FB,Pol}^{l} = -\frac{3}{4}A_{e}$$
$$\mathcal{A}_{LR}^{l} = A_{e} ; \quad \mathcal{A}_{FB,LR}^{l} = \frac{3}{4}A_{l}$$

 \mathcal{A}_{Pol}^{l} and $\mathcal{A}_{FB,Pol}^{l}$ only available for the τ $\mathcal{P}_{\tau}(\cos\theta) = -\frac{A_{\tau}(1+\cos^{2}\theta)+2A_{e}\cos\theta}{(1+\cos^{2}\theta)+2A_{\tau}A_{e}\cos\theta}$

LEPEWWG

NEUTRAL-CURRENT UNIVERSALITY

LEPEWWG

 $m_{
u_{ au}}$ from 2D likelihood fits of E_X and M_X distributions in $au o
u_{ au} X$ near the end-point

95% CL Upper Limits (MeV)

X	ALEPH	CLEO	DELPHI	OPAL
3π	25.7		28*	35.3
$3\pi\pi^0$		28		
5π	23.1	30		43.2
Combined	18.2	28*	28*	27.6

If
$$m_{\nu_{\tau}}/m_{\nu_{e}} \sim (m_{\tau}/m_{e})^{2} \implies m_{\nu_{e}} <$$

 $g_{\tau}/g_{\mu}/g_e$ Universality: (Dova-Swain-Taylor)

 $m_{
u_{ au}} < 38 \,\,{
m MeV}$ (95% CL)

1.5 eV

SuperKamiokande: (Assuming $\nu_{\mu} \rightarrow \nu_{\tau}, m_{\nu_{\tau}} \gg m_{\nu_{\mu}}$)

 $0.02 \text{ eV} < m_{
u_{ au}} < 0.08 \text{ eV}$ (90% CL)

LEPTON NUMBER VIOLATION

90% CL Upper Limits on $B(\tau^- \rightarrow X^-)$ (CLEO)

X ⁻	UL, 10 ⁻⁶	X	UL, 10 ⁻⁶
$e^-\gamma$	2.7	$\mu^-\gamma$	3.0
$e^-e^+e^-$	2.9	$\mu^-\mu^+\mu^-$	1.9
$e^-e^+\mu^-$	1.7	$\mu^-\mu^+e^-$	1.8
$e^-\mu^+e^-$	1.5	$\mu^- e^+ \mu^-$	1.5
$e^{-}\pi^{0}$	3.7	$\mu^-\pi^0$	4.0
$e^-\eta$	8.2	$\mu^-\eta$	9.6
$e^- ho^{O}$	2.0	$\mu^- ho^0$	6.3
e^-K^{*0}	5.1	$\mu^- K^{*0}$	7.5
$e^- ar{K}^{* 0}$	7.4	$\mu^-ar{K}^{*0}$	7.5
$e^-\phi$	6.9	$\mu^-\phi$	7.0
$e^{-}\pi^{+}\pi^{-}$	2.2	$\mu^-\pi^+\pi^-$	8.2
$e^{-}\pi^{+}K^{-}$	6.4	$\mu^-\pi^+K^-$	7.5
$e^-K^+\pi^-$	3.8	$\mu^- K^+ \pi^-$	7.4
$e^{-}K^{+}K^{-}$	6.0	$\mu^- K^+ K^-$	15
$e^+\pi^-\pi^-$	1.9	$\mu^+\pi^-\pi^-$	3.4
$e^+\pi^-K^-$	2.1	$\mu^+\pi^-K^-$	7.0
$e^+K^-K^-$	3.8	$\mu^+ K^- K^-$	6.0
$e^{-}\pi^{0}\pi^{0}$	6.5	$\mu^-\pi^0\pi^0$	14
$e^-\pi^0\eta$	24	$\mu^-\pi^0\eta$	22
$e^-\eta\eta$	35	$\mu^-\eta\eta$	60

HADRONIC DECAYS

Only lepton massive enough to decay into hadrons $au^- o
u_ au H^-$ probes the hadronic V - A current $\langle H^- | \bar{d}_ heta \gamma^\mu (1 - \gamma_5) u | 0 \rangle$

 $\underline{\tau^-} \rightarrow \nu_{\tau} \pi^- \pi^0$: Pion Form Factor

 $\langle \pi^{-}\pi^{0} | \, \bar{d} \, \gamma^{\mu} \, u \, | 0
angle \, \equiv \, \sqrt{2} \, F_{\pi}(s) \, (p_{\pi^{-}} - p_{\pi^{0}})^{\mu}$

[Br higher than CVC prediction by $(3.2 \pm 1.4)\%$]

 $au^-
ightarrow
u_ au \, \pi^- 2 \pi^0$

4 Form Factors: $\mathcal{F}_{1,2}$ (1⁺), \mathcal{F}_3 (1⁻), \mathcal{F}_4 (0⁺, 0⁻) 1⁻ and 0⁺ forbidden by G-Parity ; $\mathcal{F}_4^{0^-} \sim m_\pi$ $\mathcal{F}_{1,2} \longrightarrow$ 4 Structure Functions (Kühn–Mirkes)

CLEO $(5 \times 10^4 \text{ selected events})$

Non Axial Contribution < 16.6% (95% CL) $h_{\nu_{\tau}} = -1.02 \pm 0.13 \pm 0.03_{model}$ [$|h_{\nu_{\tau}}| = 1.0000 \pm 0.0057$]

$$R_{\tau} \equiv \frac{\Gamma(\tau \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau \to \nu_{\tau} e \,\overline{\nu}_{e})} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

The inclusive τ decay width can be accurately predicted in QCD (Braaten-Narison-Pich)

$$R_{\tau} = 12 \pi \int_{0}^{1} dx (1-x)^{2} \left[(1+2x) \operatorname{Im} \Pi^{T}(s) + \operatorname{Im} \Pi^{L}(s) \right]$$

= $6 \pi i \oint_{|x|=1} dx (1-x)^{2} \left[(1+2x) \Pi^{T+L}(s) - 2x \Pi^{L}(s) \right]$

 $(x = s/m_{\tau}^2)$

 $\Pi^{J}(s) \equiv |V_{ud}^{2}| \left[\Pi^{J}_{ud,V}(s) + \Pi^{J}_{ud,A}(s) \right] + |V_{us}^{2}| \left[\Pi^{J}_{us,V}(s) + \Pi^{J}_{us,A}(s) \right]$

$$i \int d^4x \, \mathrm{e}^{iqx} \, \langle 0|T \left(\mathcal{J}^{\mu}_{ij}(x) \, \mathcal{J}^{\nu}_{ij}(0)^{\dagger} \right) |0\rangle = \\ \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \, \Pi^T_{ij,\mathcal{J}}(q^2) + \, q^{\mu}q^{\nu} \, \Pi^L_{ij,\mathcal{J}}(q^2)$$

$$R_{\tau} = N_C S_{EW} \left\{ 1 + \delta'_{EW} + \delta_P + \delta_{NP} \right\}$$

$$S_{EW} = 1.0194 \quad ; \quad \delta'_{EW} = 0.0010 \quad ; \quad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

$$\delta_P = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + \dots \approx 20\%$$

$$\delta_{NP} = \sum_{n \ge 2} C_{2n}/m_{\tau}^{2n} \sim C_6/m_{\tau}^6 < 1\%$$
Similar predictions for $R_{\tau,V}$, $R_{\tau,A}$, $R_{\tau,S}$ and
$$R_{\tau}^{kl} \equiv \int ds \left(1 - s/m_{\tau}^2\right)^k \left(s/m_{\tau}^2\right)^l \frac{dR_{\tau}}{ds}$$

Non-Perturbative contributions fitted from data

	ALEPH	OPAL	
δ_P	0.202 ± 0.013		
δ_{NP}	-0.003 ± 0.004	-0.0024 ± 0.0025	
$lpha_s(m_ au)$ [CI]	0.345 ± 0.018	0.348 ± 0.021	
[FOPT]	0.322 ± 0.020	0.324 ± 0.014	
$lpha_s(M_Z)$ [CI]	0.1212 ± 0.0021	0.1219 ± 0.0020	
[FOPT]	0.1186 ± 0.0024	0.1191 ± 0.0015	
$R_{ au,V+A}$	3.492 ± 0.016	3.484 ± 0.024	
$R_{ au,V}$	1.775 ± 0.017	1.764 ± 0.016	
$R_{ au,A}$	1.717 ± 0.018	1.720 ± 0.017	
$R_{ au,S}$	0.155 ± 0.008		

PDG'98: $\alpha_s(M_Z) = 0.119 \pm 0.002$

MEASUREMENTS OF $\alpha_s(Q)$ (S. Bethke)

MEASUREMENTS OF $\alpha_s(M_Z)$ (S. Bethke)

SPECTRAL FUNCTIONS

 $v(s) \equiv 2\pi \operatorname{Im} \prod_{ud,V}^{T+L}(s)$; $a(s) \equiv 2\pi \operatorname{Im} \prod_{ud,A}^{T+L}(s)$

Important Information:

v(s) \blacktriangleright CVC , $\alpha^{-1}(M_Z) = 128.933 \pm 0.021$, $a_{\mu}^{had} = (692.4 \pm 6.2) \times 10^{-10}$ (Davier et al), ... v(s) - a(s) \blacktriangleright f_{π} , $m_{\pi^{\pm}}^2 - m_{\pi^0}^2$, $F_A/\langle r_{\pi}^2 \rangle$, ... Chiral Sum Rules (SCSB) SCALE DEPENDENCE $(m_{\tau}^2 \rightarrow s_0)$

$$R_{\tau}(s_0) \equiv 12 \pi S_{EW} \int_0^{s_0} \frac{ds}{s_0} \left(1 - \frac{s}{s_0}\right)^2 \times \left[\left(1 + 2\frac{s}{s_0}\right) \operatorname{Im} \Pi^T(s) + \operatorname{Im} \Pi^L(s)\right]$$

D=6 CONTRIBUTION TO $R_{ au,V/A}$

CHIRAL SUM RULES

 $\rho(s) \equiv \frac{1}{2\pi} \left\{ \operatorname{Im} \Pi_{ud,V}^{T+L}(s) - \operatorname{Im} \Pi_{ud,A}^{T+L}(s) \right\}$

When $s_0 \rightarrow \infty$

 $I_1 \equiv \int_0^{s_0} \rho(s) = f_{\pi}^2$; $I_3 \equiv \int_0^{s_0} \frac{ds}{s} \rho(s) = f_{\pi}^2 \frac{\langle r_{\pi}^2 \rangle}{3} - F_A$

 $I_2 \equiv \int_0^{s_0} s \,\rho(s) = 0$; $I_4 \equiv \int_0^{s_0} ds \, s \,\ln(s) \,\rho(s) = -\frac{4\pi f_\pi^2}{3\alpha} \left(m_{\pi^\pm}^2 - m_{\pi^0}^2\right)$

KAONS IN τ DECAY

Many results (ALEPH, CLEO, DELPHI, OPAL)

 $Br(\tau^- \rightarrow \nu_{\tau} X^-)$ World Averages

X^{-}	Br (%)	X^-	Br (%)
K^-	0.690 ± 0.025	$(K\pi)^-$	1.30 ± 0.07
$ar{K}^{0}\pi^{-}\pi^{0}$	0.356 ± 0.041	$K^-\pi^+\pi^-$	0.310 ± 0.058
$K^-\pi^+\pi^-\pi^0$	0.070 ± 0.025	K^0K^-	0.159 ± 0.017
$K^-K^+\pi^-$	0.156 ± 0.018	$K^0_S K^0_S \pi^-$	0.024 ± 0.005
$K^0 K^- \pi^0$	0.148 ± 0.021	$K^-K^+\pi^-\pi^0$	0.044 ± 0.018

Strange Spectral Function (ALEPH)

$$R_{ au,S}$$
 $ightarrow$ m_s (Prades-Pich)

$$\begin{split} \delta R_{\tau}^{kl} &\equiv \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} = 3 \sum_{D} \left[\delta_{ud}^{kl(D)} - \delta_{us}^{kl(D)} \right] \\ &\approx 24 \, \frac{m_s^2(m_{\tau})}{m_{\tau}^2} \, \Delta_{kl}(a_{\tau}) - 48 \, \pi^2 \, \frac{\delta O_4}{m_{\tau}^4} \, Q_{kl}(a_{\tau}) \end{split}$$

$$\delta O_{4} \equiv \langle 0|m_{s}\bar{s}s - m_{d}\bar{d}d|0\rangle \approx f_{\pi}^{2} \left(m_{\pi^{\pm}}^{2} - m_{K^{\pm}}^{2}\right)$$

 $\Delta_{00}(a_{\tau}) = 2.0 \pm 0.5$ (Bad perturbative behaviour)

(k, l)	$\delta R_{ au}^{kl}$ (ALEPH)	$m_s(m_ au)$ (MeV)
(0,0)	0.394 ± 0.137	$143\pm31_{exp}\pm18_{th}$
(1, 0)	0.383 ± 0.078	$121\pm17_{exp}\pm18_{th}$
(2,0)	0.373 ± 0.054	$106\pm12_{exp}\pm21_{th}$

$$m_s(m_{ au}) = (119 \pm 12_{exp} \pm 18_{th} \pm 10_{V_{us}})$$
 MeV

 $m_s(1\,{
m GeV}) = 164\pm31$; $m_s(2\,{
m GeV}) = 114\pm23$

Subtracting the known K/π poles (J=0) one gets an upper (lower) bound on Im $\Pi^{L+T}(s)$ [Im $\Pi^{L}(s)$] $\longrightarrow m_s(m_\tau) < 202 \text{ MeV}$ (in agreement with ALEPH)

The τ is an ideal tool to test the Standard Model

- Lepton Universality tested to rather good accuracy
- V A Structure verified in $\mu \to e \, \bar{\nu}_e \, \nu_\mu$, but not yet in $\tau \to l \, \bar{\nu}_l \, \nu_\tau$. Good limits on $\tau_R \to l \, \bar{\nu}_l \, \nu_\tau$
- Wonderful QCD Laboratory to study the hadronic V, A currents

- Exclusive: Chiral Dynamics, Resonances, ...

– Inclusive: $lpha_s$, m_s , $\langle 0|G^2|0
angle$, \ldots

• New Physics could also show up ($\not\!\!\!L$, CP, $m_{\nu_{\tau}}$, a_{τ} , $d_{\tau}^{\gamma,Z}$, ...)

A remarkable progress has been already achieved

Large room for future improvements

$\begin{array}{c} \text{Search for } \tau \rightarrow \mu \gamma \\ \text{(CLEO Collaboration)} \end{array}$

Lepton-Photon, August 1999 All quoted results are preliminary!

CLEO, Phys. Rev. D 55 (1997): $4.24 \times 10^6 \tau^+ \tau^-$ pairs; $\mathcal{B}(\tau \to \mu \gamma) < 3.0 \times 10^{-6}$ at 90% CL

this search: 13.8 fb⁻¹ \implies 12.6 × 10⁶ $\tau^+\tau^-$ pairs (full CLEO II)

	Meth. of prev. search	Unbinned EML fit
Number of signal events	$n_0 = 6$	s = 1.8
Expected backgr. rate, events	5.5 ± 0.5	-
Statistical significance		1.0σ
UL at 90% CL, events	5.8	3.8
UL for $\mathcal{B}(au o \mu \gamma)$ at 90% CL	1.8×10^{-6}	$1.0 imes10^{-6}$

restricts the parameter space for some versions of MSSM

