Rare Decays of Kaons

W. Molzon University of California, Irvine

LEPTON PHOTON '99

XIX International Symposium on Lepton and Photon Interactions at High Energies

Stanford University August 9, 1999

Outline

- Muon and Electron Lepton Number Violation
- CP Violation and Quark Mixing Matrix Measurements
- Prospects for Further Measurements

Caveats

- Most results are preliminary, many from KAON99
- I thank experimenters for supplying data and figures
- Any errors are the responsibility of the speaker
- I apologise for skipping some topics. Copies of transparencies from talks at KAON99 can be found at:

hep.uchicago.edu/kaon99/

BNL E787 \Rightarrow **E949**

- $\mathbf{K}^+ \to \pi^+ \nu \overline{\nu}$ $[|\mathbf{V}_{td}^* \mathbf{V}_{ts}|]$
- Many radiative decays (chiral perturbation theory)
- Typical sensitivity $10^{-10} \Rightarrow 10^{-11}$

BNL E865

- $\mathbf{K}^+ \to \pi^+ \mu^+ \mathbf{e}^-$ [LFV]
- Many radiative decays (chiral perturbation theory)
- Typical sensitivity 5×10^{-12}

BNL E871

- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mu^{\pm} \mathbf{e}^{\mp}$ [LFV]
- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mu^{+}\mu^{-}$ [$\mathbf{Re}(\mathbf{V}_{\mathbf{td}}^{*}\mathbf{V}_{\mathbf{ts}})$]
- Typical sensitivity 2×10^{-12}

Fermilab E799-II (KTeV) \Rightarrow KAMI

- ϵ'/ϵ [direct CP violation]
- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}}
 ightarrow \pi^{\mathbf{0}} \mu^{\pm} \mathbf{e}^{\mp}$ [LFV]
- Many K decay parameters, radiative decays
- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \nu \overline{\nu}$ $[\mathbf{Im}(\mathbf{V}_{\mathbf{td}}^{*} \mathbf{V}_{\mathbf{ts}})]$
- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}}
 ightarrow \pi^{\mathbf{0}} \mathbf{l}^{+} \mathbf{l}^{-}$ $[\mathbf{V}_{\mathbf{td}}^{*} \mathbf{V}_{\mathbf{ts}}]$
- Typical sensitivity $3 \times 10^{-11} \Rightarrow < 10^{-12}$

 $egin{array}{l} {
m BNL \ E926} \ {
m K_L^0} o \pi^0
u \overline{
u} \ [{
m Im}({
m V_{td}^* V_{ts}})] \ {
m Sensitivity} \ < 10^{-12} \end{array}$

Search for Lepton Flavor Violation

Experimental evidence shows there are nearly conserved additive quantum numbers associated with each *family* of leptons - nonconservation referred to as LFV.

• Rigorously true in the SM if neutrinos are mass degenerate

G=1	e	$ u_e $	u	d
G=2	μ	$ u_{\mu}$	c	s
G=3	au	$ u_{ au}$	t	b

- These conservation laws are accidental no gauge symmetry protects lepton flavor, but no mechanism for LFV exists in SM except for ν oscillation.
- Information on neutrino mass and mixing in an extended SM results in LFV rates too low to measure for all processes except ν oscillations.
- Essentially all extensions to the SM allow LFV.

⇒ Discovery of LFV would be unambiguous evidence for physics beyond the Standard Model

• The mass scale probed is very high:

LFV Searched for in Many Processes

 $\Delta G = 0(2)$ processes:

M or ΔM Limit

wmolzon

$\overline{\begin{array}{c} \overline{s} \\ d \end{array}} \xrightarrow{X} \xrightarrow{\mu^+} e^-$	$ \begin{array}{c} \textbf{BNL E871} \\ \textbf{B}(\textbf{K}_{L}^{0} \rightarrow \mu \textbf{e}) < 4.7 \times 10^{-12} \\ \textbf{AV or PS} \end{array} $	$150 { m ~TeV/c^2}$
x e^{-} \bar{u} \bar{u}	$\begin{array}{c} {\rm BNL~E865} \\ {\rm B}({\rm K}^+ \to \pi \mu {\rm e}) < 4.0 \times 10^{-11} \\ {\rm V~or~S} \\ {\rm BNL~E865} \to 10^{-11} \end{array}$	$31~{ m TeV/c^2}$
\overline{s} \overline{d} \overline{d} \overline{d} μ^+	$ \begin{array}{c} \textbf{Fermilab E799} \\ \textbf{B}(\textbf{K}_{L}^{0} \rightarrow \pi^{0} \mu \textbf{e}) < \textbf{3}.\textbf{2} \times \textbf{10}^{-10} \\ \textbf{V or S} \end{array} $	$37 \mathrm{TeV/c^2}$

$\Delta G = \pm 1$ processes:

μ^+ μ^+ e^+	$\mathbf{B}(\mu \rightarrow \mathbf{eee}) < 1.0 \times \mathbf{10^{-12}}$	86 TeV/ c^2
μ^+	$\begin{array}{c} \textbf{MEGA} \\ \textbf{B}(\mu^+ \rightarrow \textbf{e}^+ \gamma) < \textbf{1.2} \times \textbf{10}^{-11} \\ \textbf{Background limited} \\ \textbf{PSI experiment} \rightarrow \textbf{10}^{-14} \end{array}$	$21~{ m TeV/c^2}$
μe u,du,d	$\begin{array}{ c c } \hline \textbf{PSI SINDRUM2} \\ \hline \Gamma(\mu^- A \rightarrow e^- A) \\ \hline \Gamma(\mu^- A \rightarrow \nu A') \\ \hline \textbf{SINDRUM2} \rightarrow 4 \times 10^{-14} \\ \hline \textbf{MECO at BNL} \rightarrow 5 \times 10^{-17} \end{array}$	$365~{ m TeV/c^2}$

 $\Delta G = \pm 2$ processes:

gennum

e871cover

BNL E871 – Leptonic Decays of Neutral Kaons

wmolzon

UC Irvine, Richmond, Stanford, Texas, Wm. and Mary

Overview of BNL E871 Rare Decay Experiment

Very intense K beam and an apparatus that handles rates

- 1.5×10^{13} protons per 1.5 s spill every 3.5 s
- $\bullet~65~\mu sr$ beam, $3\times 10^8~K_L^0$ per spill, $2 < p_K < 8~GeV/c$
- Neutral beam absorbed in dump within spectrometer: reduces downstream rates, allows increased acceptance
- Spectrometer with small diameter drift tubes using fast gas in high rate region (up to 700 kHz per wire)

Spectrometer with good background rejection capabilities

- Excellent resolution and suppression of tracking errors with redundant momentum measurement
- Redundant electron and muon identification

Event selection and analysis to eliminate backgrounds

- 2 body kinematics exploited in low level trigger that required parallel tracks
- Online pattern recognition and kinematic analysis to reduce data to mass storage
- Offline analysis designed by studying events away from signal region and predicting background levels with Monte Carlo simulation.

Normalization determined from copious $K_L^0 \rightarrow \pi^+\pi^-$ decays

• Similar kinematics minimizes systematic uncertainties

e871mueana<u>lysis</u>

$\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} ightarrow \mu^{\pm} \mathbf{e}^{\mp}$ Analysis and Background Studies

Background is well understood – primarily $K_L^0 \rightarrow \pi e\nu, \ \pi \rightarrow \mu \nu \overline{\nu}$

Absolute normalization and kinematic distributions predicted

New Limit on $B(K_L^0 \to \mu^{\pm} e^{\mp})$ From BNL E871

After all selection criteria (including signal region) chosen data reanalysed to determine signal

- Smallest limit on any branching fraction of a hadron
- Limit on LFV physics process better than that of any operating or proposed kaon experiment (unless pure vector or scalar interaction).
- Improvements beyond a factor of 10 in sensitivity very difficult due to intrinsic backgrounds.

BNL E865 Search for $K^+ \rightarrow \pi^+ \mu^+ e^-$

wmolzon

BNL E865 Analysis and Background Rejection

Preliminary selection criteria similar to 1995 analysis applied

• Acceptance determined from $K^+ \rightarrow \pi^+ \pi^- \text{ decays}$

- Likelihood distributions defined from the probability of finding worse value of selection variable
- Total likelihood defined by summing contributions
- Remaining events selected by requiring a likelihood value such that 80% of MC $K^+ \rightarrow \pi^+ \mu^+ e^-$ events pass cut.
- 80% requirement set before examining distribution

e865result

New Limit on $B(K^+ \rightarrow \pi^+ \mu^+ e^-)$ from BNL E865

- No events satisfy all cuts including likelihood cut.
- Events failing likelihood have properties of accidentals.

New limit on $B(K^+ \to \pi^+ \mu^+ e^-)$ [90%] CL from BNL E865: $< 4.8 \times 10^{-11}$ - $< 4.0 \times 10^{-11}$ -1996 data, cut on likelihood $< 4.0 \times 10^{-11}$ -1996 data, frequentist approach $< 2.9 \times 10^{-11}$ -E865 1995 + 1996 data + E777

Final data is in hand with \sim 5 \times 1996 statistics – background could limit sensitivity improvement.

wmolzon

Status of and Prospects for LFV Experiments

- BNL E871 B($K_L^0 \rightarrow \mu^{\pm} e^{\mp}$) < 4.7 × 10⁻¹² [90% CL] no improved experiment in sight – background at 10⁻¹³
- BNL E865 B(K⁺ $\rightarrow \pi^+\mu^+e^-$) < 4.0 × 10⁻¹¹ [90% CL] data in hand to go to 10⁻¹¹ – background limited soon

• Proposed sensitivites of upcoming experiments and recent predictions of LFV rates make a discovery increasingly likely.

Motivation for Measuring $\mathbf{B}(\mathbf{K} \to (\pi) \mathbf{l} \overline{\mathbf{l}})$

• Standard Model rate small – no tree level FCNC \Rightarrow decays proceed through box and penguin diagrams.

• Study of SM quark mixing matrix

V_{ud}	V_{us}	V_{ub}		$1-\lambda^2/2$	λ	$\mathbf{A}\lambda^{3}(ho-\mathbf{i}\eta)$
V_{cd}	V_{cs}	V_{cb}		$-\lambda$	$1-\lambda^2/2$	$\mathbf{A}\lambda^{2}$
V_{td}	V_{ts}	V_{tb}	A	$\lambda\lambda^{3}(1- ho-{ m i}\eta)$	$-{f A}\lambda^{f 2}$	1

• All unitarity triangles have the same area:

Kaon experiments measure directly Jarlskog invariant:

Experiment	Measured Q	uantity
${f K_L^0 o \mu^+ \mu^-}$	$ \mathbf{Re}(\mathbf{V_{td}}\mathbf{V^*_{ts}}) $	$ \mathbf{A^2}\lambda^{5}(1- ho) $
${f K}^{f 0}_{f L} o \pi^{f 0} u \overline{ u}$	$ \mathbf{Im}(\mathbf{V_{td}}\mathbf{V^*_{ts}}) $	$ \mathbf{A}^2 \lambda^5 \eta $
$\mathbf{K}^+ \to \pi^+ \nu \overline{\nu}$	$ \mathbf{V_{td}V_{ts}^*} $	$ \mathbf{A^2}\lambda^{5}(1- ho-\mathbf{i}\eta) $

Implications of ϵ'/ϵ for Rare Decays of Kaons

Recent work on effective Z_{ds} couplings

- Motivated in part by E787 observation of one $\mathrm{K}^+ \to \pi^+ \nu \overline{\nu}$ event at $\sim 5~(2) \times \mathrm{SM}$ rate and by large ϵ'/ϵ value
- $\mathbf{Z}_{\mathbf{DS}}$ couplings would affect both $\mathbf{K} \to \pi \mathbf{l} \overline{\mathbf{l}}$ and ϵ' / ϵ
- Arise naturally in supersymmetry from penguin diagrams

Constraints on $B(K_L^0 \to \pi^0 \nu \overline{\nu})$ from ϵ'/ϵ (Bosch, Buras, et al. hep-ph9904408)

• SM: $1.6 \times 10^{-11} < B(K_L^0 \to \pi^0 \nu \overline{\nu}) < 3.9 \times 10^{-11}$

$$\begin{array}{l} \bullet \ \epsilon'/\epsilon < \mathbf{28} \times \mathbf{10^{-4}} \Rightarrow \\ \mathbf{B}(\mathbf{K_L^0} \rightarrow \pi^0 \nu \overline{\nu}) < \mathbf{48} \times \mathbf{10^{-11}} \end{array}$$

• Room for new physics above (or below) SM rate

- SM value: $B(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = 8.2 \times 10^{-11}$
- $\begin{array}{l} \bullet \ \epsilon'/\epsilon < \mathbf{28} \times \mathbf{10^{-4}} \ + \ \mathbf{B}(\mathbf{K_L^0} \rightarrow \mu^+\mu^-) \Rightarrow \\ \mathbf{B}(\mathbf{K^+} \rightarrow \pi^+\nu\overline{\nu}) < \mathbf{29} \times \mathbf{10^{-11}} \end{array}$
- Room for new physics above SM rate

Challenges in $\mathbf{K} \to (\pi) \mathbf{l} \mathbf{\bar{l}}$ Experiments

- $\mathbf{K}_{\mathbf{L}}^{0} \rightarrow \mu^{+}\mu^{-}$ lots of data, hard to interpret
 - Short distance rate $\propto (1-\rho)^2$
 - Rate dominated by long distance physics
 - Deduce ReA by subtracting absorptive contribution from measured rate
 - Get A_{SD} from ReA Re $A_{\gamma^*\gamma}$ (from measurements of radiative decays + theory)
- $\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$ easy to interpret, low statistics data
 - Decay rate $\propto |(\mathbf{1} \rho \mathbf{i}\eta)|^2$
 - Standard model rate $pprox 8 imes 10^{-11}$
 - Backgrounds from ${\bf K^+} \rightarrow \pi^+\pi^0$ and ${\bf K^+} \rightarrow \mu^+\nu$
- $\mathbf{K}_{\mathrm{L}}^{0} \rightarrow \pi^{0} \nu \overline{\nu}$ easy to interpret, very difficult experiment
 - Decay rate $\propto \eta^2$
 - Standard model rate $pprox 3 imes 10^{-11}$
 - Significant backgrounds from $K^0_L \rightarrow \pi^0 \pi^0$
 - Very few experimental constraints
- $K_L^0 \rightarrow \pi^0 e^+ e^-$ low rate, significant background
 - Direct CP violating term $\propto \eta^2$ with γ or Z⁰ exchange
 - CP conserving term from 2γ intermediate state
 - Indirect CP violating term from $K_1 K_2$ mixing
 - Standard model rate $pprox 10^{-11}$
 - Many backgrounds $K_L^0 \rightarrow \gamma e^+ e^-$ with radiative γ

Overview of $B(K_L^0 \to \mu^+ \mu^-)$ Measurement

Goal is to extract information on short distance physics:

Situation complicated by long distance contributions:

has LD $(\gamma\gamma^*)$ and SD contributions

Procedure to extract short distance contributions:

- Measure $B(K_L^0 \to \mu^+ \mu^-)$
- Subtract absorptive part of long distance contribution using measured $B(K_L^0 \rightarrow \gamma \gamma)$ and QED calculation
- Correct for long distance contributions to Re(A) using theoretical analysis (c.f. Dumm and Pich, hep-ph/9810523; D'Ambrosio, Isidori and Portoles, Phys. Lett. B 423.) Relies on models and the method is not universally accepted. Information on $K^0_L \rightarrow \gamma e^+ e^-$ and $K^0_L \rightarrow e^+ e^- e^+ e^-$ useful in checking models.

following prescription of D'Ambrosia, et al.

First Observation of $K_L^0 \rightarrow e^+e^-$ From BNL E871

Analysis tuned and cuts chosen using data outside exclusion region – background from $K_L^0 \rightarrow e^+e^-e^+e^-$ and $K_L^0 \rightarrow e^+e^-\gamma$

- Four events found in predetermined signal region
- Background in exclusion region consistent with expectation – expect ~ 0.2 background events in signal region
- Distribution in p_t^2 vs m_{ee} fitted to linear combination of $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mathbf{e}^+\mathbf{e}^-\mathbf{e}^+\mathbf{e}^-$, $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mathbf{e}^+\mathbf{e}^-\gamma$ and $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mathbf{e}^+\mathbf{e}^-$ distributions

$$\Rightarrow \mathbf{B}(\mathbf{K_L^0} \to \mathbf{e^+e^-}) = (\mathbf{8.7^{+5.7}_{-4.1}}) \times \mathbf{10^{-12}}$$

- Fitted background levels agree with absolute prediction
- $B(K_L^0 \rightarrow e^+e^-)$ consistent with χPT prediction
- This is the smallest branching fraction ever measured

BNL E787 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Experiment

Alberta, BNL, KEK, Osaka, Princeton, TRIUMF

 $\mathbf{B}(\mathbf{K}^+ \to \pi^+ \nu \overline{\nu}) \Rightarrow |\mathbf{V}_{td}^* \mathbf{V}_{ts}|$ with small theoretical uncertainty:

 $\mathbf{B}(\mathbf{K}^+ \to \pi^+ \nu \overline{\nu}) = \mathbf{4}.\mathbf{11} \times \mathbf{10^{-11}} \times \mathbf{A}^4 \times \mathbf{X}(\mathbf{x_t}) \times [(\rho_0 - \rho)^2 + \eta^2]$

 ${f X}({f x}_t)$ known function of $m_t^2/m_W^2,\,
ho_0\simeq 1.4$ due to charm

Backgrounds from:

$$\mu^+$$
 from $\mathbf{K}^+ \to \mu^+ \nu$

$$\pi^+ \text{ from } \mathbf{K}^+ o \pi^+ \pi^0$$

- $\Rightarrow \text{Particle identification:} \\ \mathbf{K}^+ \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow \mathbf{e}^+ \text{ decays}$
- $\Rightarrow \text{ Kinematic analysis:} \\ \text{Measure E, p, R of } \pi^+$
- $\Rightarrow \text{Veto events with extra } \gamma:$ Pb-scintillator and CsI hermetic veto

Preliminary Result on BNL E787 Study of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

 $\mathbf{B}(\mathbf{K}^+ o \pi^+
u \overline{
u}) = 1.7^{+4.0}_{-1.42} \times 1^{+.22}_{-.18} \times 10^{-10} \ [\mathrm{SM} \sim 0.82 \times 10^{-10}]$

Result and uncertainty scaled by me to 1995 result Uncertainty in reported preliminary 95-97 sensitivity

Slightly higher than, consistent with SM value of 0.82×10^{-10} Final E787 data in hand to improve sensitivity $\times 2$

e949proposal

BNL E949 – Improved Measurement of $B(K^+ \rightarrow \pi^+ \nu \overline{\nu})$

Expected sensitivity, scaled wrt E787 1995 data:

E787 events at SM rate $(0.82 imes10^{-10})$	0.20
Lower K ⁺ momentum	×1.38
Improved duty factor	imes 1.56
Trigger + other improvements	imes1.54
Additional detector improvements	imes 2.10
Optimized high-rate analysis	imes 2.0
Running time (6000 hours – 60 weeks)	imes 3.6
Total above $K^+ \rightarrow \pi^+ \pi^0$ peak at SM	5 – 10.0 events
Analyse below $\mathbf{K}^+ ightarrow \pi^+ \pi^{0}$ peak	imes 2.0
Best possible sensitivity at SM	10-20 events

mostly already obtained

wmolzon

KTeV E799 $K_L^0 \rightarrow \pi^0 e^+ e^-$ Analysis

Background dominated by $K_L^0 \rightarrow \gamma e^+ e^-$ with radiated γ

Background level reduced with kinematic cuts:

- \bullet Eliminate events with \vec{p}_{γ} opposite $\vec{p}_{e^+} + \vec{p}_{e^-}$ in $K^0_L~CM$
- \bullet Eliminate events with γ along \mathbf{e}^+ or \mathbf{e}^- direction

New Limit on $B(K_L^0 \rightarrow \pi^0 e^+ e^-)$ from KTeV E799

Set upper limit based on 2 events, consistent with background:

$${f B}({f K_L^0} o {\pi^0}{f e^+ e^-}) < 5.64 imes {f 10^{-10}} \ ({f 90\% CL}) \ [{f SM} \sim {f 10^{-11}}]$$

- Expect $\sim 3 \times$ more data in 1999 run
- Eventual measurement will be events above background

New Limit on $B(K_L^0 \rightarrow \pi^0 \mu^+ \mu^-)$ from KTeV E799

Set upper limit based on 2 events, consistent with background:

$${f B}({f K_L^0} o \pi^0 \mu^+ \mu^-) < 3.4 imes 10^{-10} \; (90\% CL) \; [{
m SM} \sim 10^{-12}]$$

- Expect $\sim 3 \times$ more data in 1999 run
- Eventual measurement will be events above background No double momentum measurement to remove π decay

First observation of $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mu^{+}\mu^{-}\gamma\gamma$ (4 events):

$$\mathbf{B}(\mathbf{K_L^0} \to \mu^+ \mu^- \gamma \gamma, \mathbf{E}^*_{\gamma} > \mathbf{10} \ \mathbf{MeV}) = (\mathbf{1.42^{+1.02}_{-0.81} \pm 0.14}) \times \mathbf{10^{-9}}$$

Fermilab KTeV E799 Search for $K_L^0 \to \pi^0 \nu \overline{\nu}$

 $B(K_L^0 \to \pi^0 \nu \overline{\nu}) \Rightarrow Im(V_{td}^* V_{ts})$ with small theoretical uncertainty

For $\pi^0 \rightarrow \gamma \gamma$ decays, current detectors measure γ position and E

- K_L^0 decay point inferred by constraining $M_{\gamma\gamma}$ to M_{π^0}
- Copious background from ${f K}^0_{
 m L} o \pi^0 \pi^0$
- Rely on γ veto, and cut on \mathbf{p}_{T} of π^{0} to reject background
- Requires at least nearly hermetic γ veto with high efficiency

New result uses $\pi^{0} \rightarrow \gamma e^{+}e^{-}$ to determine K_{L}^{0} decay point

- Insufficient sensitivity to get near Standard Model level
- \bullet Allows study of backgrounds other than ${\bf B}({\bf K}_{\rm L}^{0}\to\pi^{0}\pi^{0})$

$$-\Lambda
ightarrow \mathrm{n}\pi^{0}$$

$$-\Xi
ightarrow\Lambda\pi^{0}$$

New Limit on $B(K_L^0 \to \pi^0 \nu \overline{\nu})$ from Fermilab KTeV E799

wmolzon

- \bullet Background from hyperon decays at low $p_{\rm T}$
- \bullet Background from ${\bf B}({\bf K_L^0} \to \pi^{\bf 0}\pi^{\bf 0})$ suppressed

$${f B}({f K_L^0} o \pi^0
u \overline{
u}) < {f 5.9 imes 10^{-7}} \ [{
m SM} \sim {f 3 imes 10^{-11}}]$$

One day test of $K^0_L \to \pi^0 \nu \overline{\nu}, \pi^0 \to \gamma \gamma$ done:

• Limit set based on one event consistent with background

 $\mathbf{B}(\mathbf{K_L^0} \to \pi^0 \nu \overline{\nu}) < \mathbf{1.6} \times \mathbf{10^{-6}}$

BNL, Jefferson Lab, Kyoto, INR Moscow, New Mexico, TRIUMF, Virginia Tech, Yale, Zurich

Produce beam at large angle (45°) – low momentum K_L^0 γ veto based on E787 – ~ 10⁻⁶ inefficiency for $E_{\gamma} > 20$ MeV Deduce $E(K_L^0)$ by TOF – 250 ps γ timing, 150 ps beam timing K_L^0 vertex by γ direction – ~ 35 mrad for 200 MeV γ

9000 hours, 10¹⁴ protons/pulse $\Rightarrow 50 \ \mathrm{K_L^0} \rightarrow \pi^0 \nu \overline{\nu} \ \mathrm{with} \ \mathrm{S:N} \simeq 5:1$

145 m155 m165 m175 m185 m195 m205 mArizona, Campinas, Chicago, Colorado, Elmhurst
Fermilab, Osaka, Virginia, Wisconsin

 $\begin{array}{c} \mbox{Few kinematic constraints:} \\ \mbox{No measurement of } E(K_L^0) \\ \mbox{No } \gamma \mbox{ direction} \\ \mbox{Superb photon detector} \\ \mbox{Relatively lower} \\ \mbox{neutron flux in beam} \\ \mbox{Moderate } K_L^0 \mbox{ energy} \\ \mbox{ Relatively fewer low energy } \gamma \end{array}$

Detector, beam development γ veto better than LOI \Leftarrow Points(data) Line(LOI assumption) Measurement of n flux at 150 GeV planned for 1999 Tevatron run

 $3 imes 10^{13} \mathrm{\ protons/pulse} \Rightarrow 15\text{--}30 \mathrm{\ events} \mathrm{\ per} \mathrm{\ year \ with} \mathrm{\ S:N} \simeq 10:1$

Muon and electron number violation

- $\mathbf{K} \to (\pi) \mu \mathbf{e}$
 - Experimental sensitivities are a few $\times 10^{-12}$.
 - KAMI at Fermilab has the potential to get to $\sim 10^{-13}$.
 - Sensitivity beyond $\sim 10^{-13}$ is difficult due to background.

wmolzon

• Progress in LFV physics is likely to come from μ sector: Experiments are proposed with sensitivities $1000 \times$ those of current efforts.

Measuring V_{td} and CP violation

• $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \mu^{+}\mu^{-}$

Precision of branching fraction measurement is $\sim 2\%$. Deriving SD physics requires measurements of K_L^0 radiative decays and theoretical models of LD physics.

• $\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu} \Rightarrow$ precise determination of $|\mathbf{V}_{td}^* \mathbf{V}_{ts}|$ BNL E787 sensitivity is 1 event at the SM level. BNL E949 could measure $|\mathbf{V}_{td}^* \mathbf{V}_{ts}|$ to ~ 15%. Fermilab CKM could measure $|\mathbf{V}_{td}^* \mathbf{V}_{ts}|$ to ~ 5%.

• $K_L^0 \rightarrow \pi^0 \nu \overline{\nu} \Rightarrow$ precise determination of $Im(V_{td}^*V_{ts})$ Current experimental sensitivities are far from SM. BNL E926 and Fermilab KAMI might be able to detect a few tens of events at the SM level. No experimental information precludes decay rates much larger(or smaller) than SM prediction.

Some models(supersymmetry) allow(suggest) significant new contributions to decay rate.

K decay experiments may be able to measure the area of a unitarity triangle with precision equal or superior to that of B physics experiments, allowing a direct confrontation of SM picture of quark mixing matrix and CP violation.