$\operatorname{Re}(\varepsilon'/\varepsilon)$ result from the NA48 experiment

Giles Barr CERN

9 August 1999 Lepton–Photon Symposium

On behalf of the **NA48 COLLABORATION**: Cagliari Cambridge CERN Dubna Edinburgh Ferrara Firenze Mainz Orsay Perugia Pisa Saclay Siegen Torino Vienna Warsaw

Introduction

INDIRECT **CP VIOLATION** $\varepsilon = 2.27 \times 10^{-3}$ (1964)

Both K_S and K_L \Rightarrow have slightly more K° than \overline{K}°

If this were all:

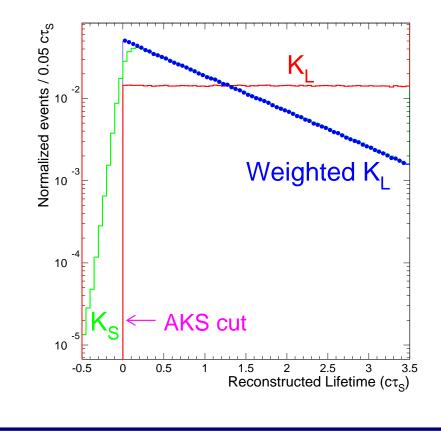
$$K_2 \to K_1 \to \pi\pi$$

the $\pi\pi$ would be just like in K_S decays. [Specifically, the ratio $\pi^{\circ}\pi^{\circ}/\pi^{+}\pi^{-}$].

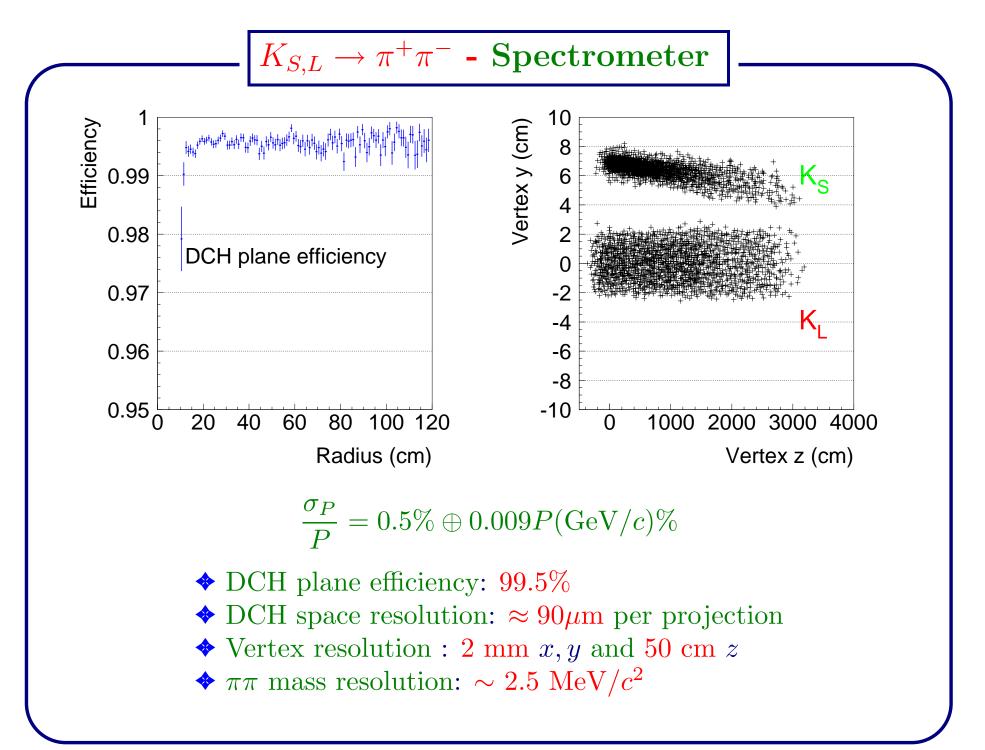
DIRECTLY to $\pi\pi$?

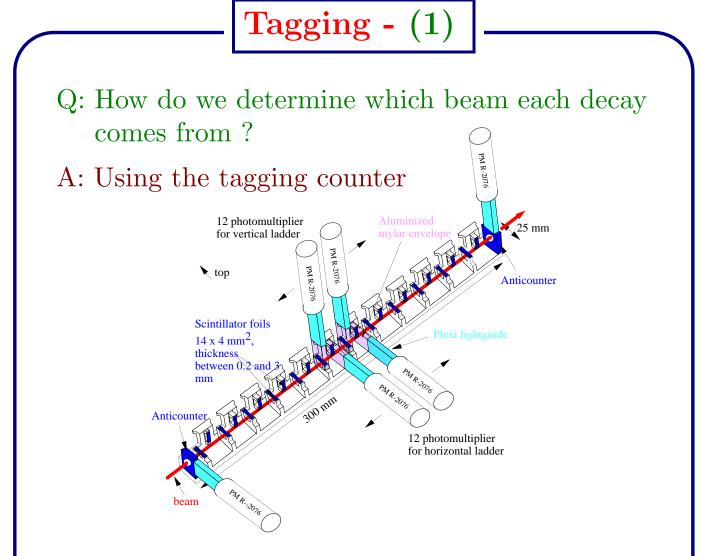
Can the K_2 decay [Expected if the CKM] matrix has $\eta \neq 0$]

$$R = \frac{\Gamma(\mathbf{K_L} \to \pi^0 \pi^0)}{\Gamma(\mathbf{K_S} \to \pi^0 \pi^0)} / \frac{\Gamma(\mathbf{K_L} \to \pi^+ \pi^-)}{\Gamma(\mathbf{K_S} \to \pi^+ \pi^-)}$$
$$\simeq 1 - 6 \operatorname{Re}(\varepsilon' / \varepsilon)$$


Measurement Principle

$$R = \frac{\Gamma(\mathbf{K}_{\mathrm{L}} \to \pi^{0} \pi^{0})}{\Gamma(\mathrm{K}_{\mathrm{S}} \to \pi^{0} \pi^{0})} / \frac{\Gamma(\mathbf{K}_{\mathrm{L}} \to \pi^{+} \pi^{-})}{\Gamma(\mathrm{K}_{\mathrm{S}} \to \pi^{+} \pi^{-})}$$

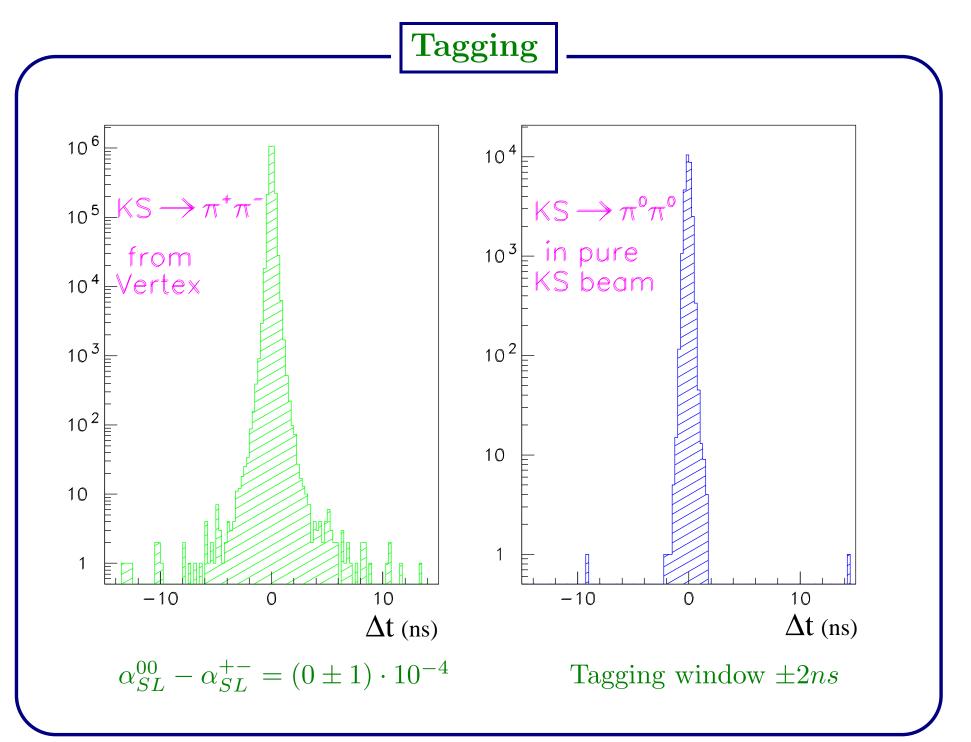

Exploit cancellations in R

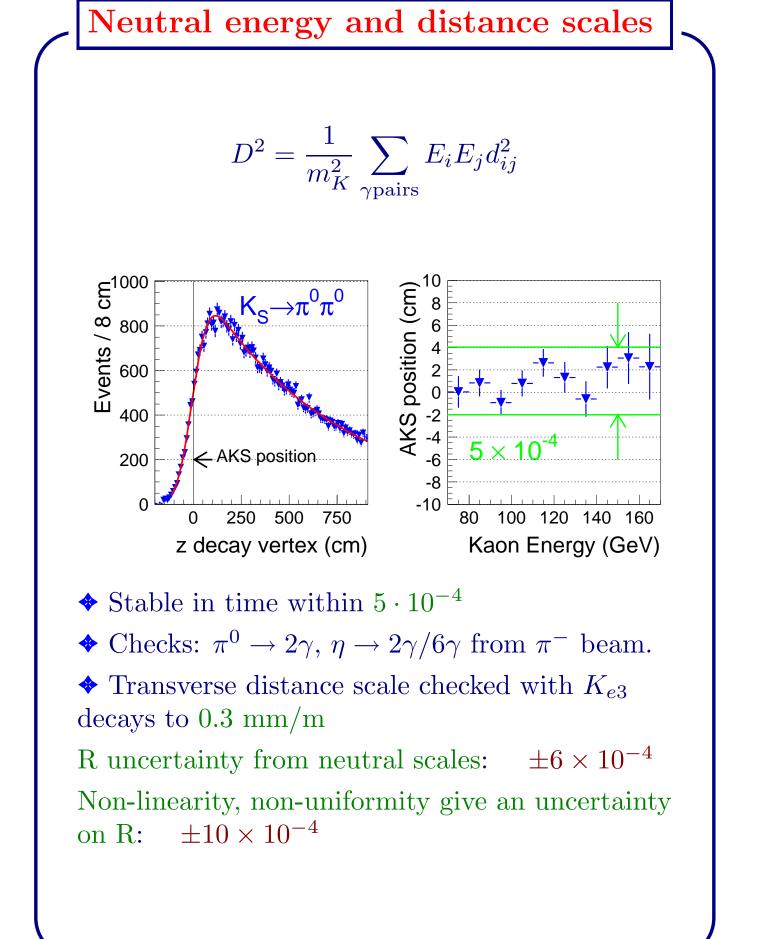

Make systematics affect 2 modes symmetrically.

- * Collected all 4 modes together two beams.
 - Minimize accidental activity difference.
 - detection efficiency, trigger,
- * Acceptance corrections:
 - Different K_S and K_L lifetimes
 - Use K_L only in region with K_S
 - Weight the K_L with $e^{t/\tau_S} \Rightarrow \text{like } K_S$
 - $\Rightarrow \text{Residual MC correction is small}$

BEAM DUMP BEAM MONITOR MUON CTRS. HADRON CALORIM. HODOSCOPE E.M. CALORIMETER DCH4 ANTI 7 GAS DCH3--100mMAGNET SPECTROMETER He DCH2 ANTI 6 90m DCH1--The NA48 detector KEVLAR WINDOW 80m ANTI 5 VACUUM TANK 70m ANTI 4 60m ANTI 3 50m ANTI 2 40m 30m ANTI 1 20m 10mAKS y=500mm z=0FINAL COLLIMATORS KS KL

The $\pi^+\pi^-$ events are easy to tag using the vertex position, but for symmetry we use the same technique as for $\pi^0\pi^0$ decays.

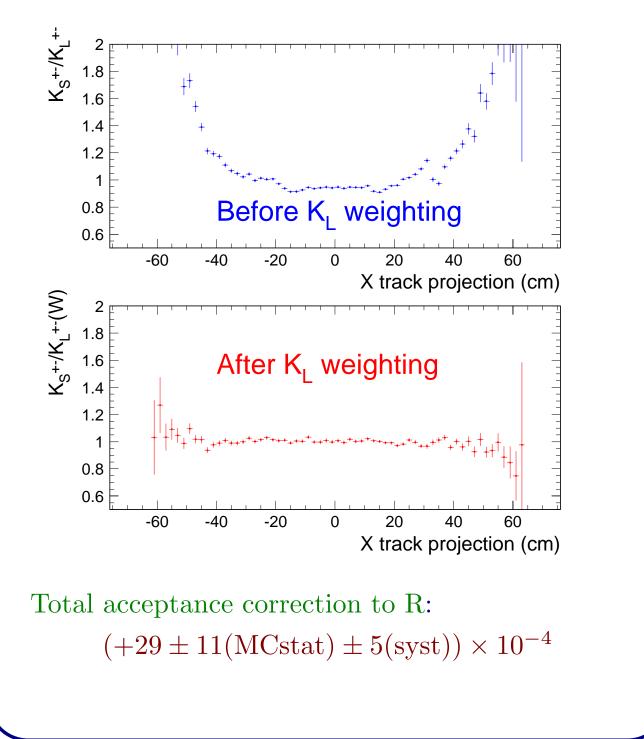

- * We measure the time of the event
- * Proton seen \Rightarrow its a K_S


Study accidental arrival of a proton in time:

$$(+18 \pm 9) \times 10^{-4}$$

Study tails in event time reconstruction:

 $(0 \pm 6) \times 10^{-4}$



Acceptance correction

 \clubsuit Lifetime weighting of $K_{\rm L}$ minimizes acceptance differences.

♦ Analysis in K^0 energy bins minimizes K_S/K_L energy spectra corrections.

Accidental activity

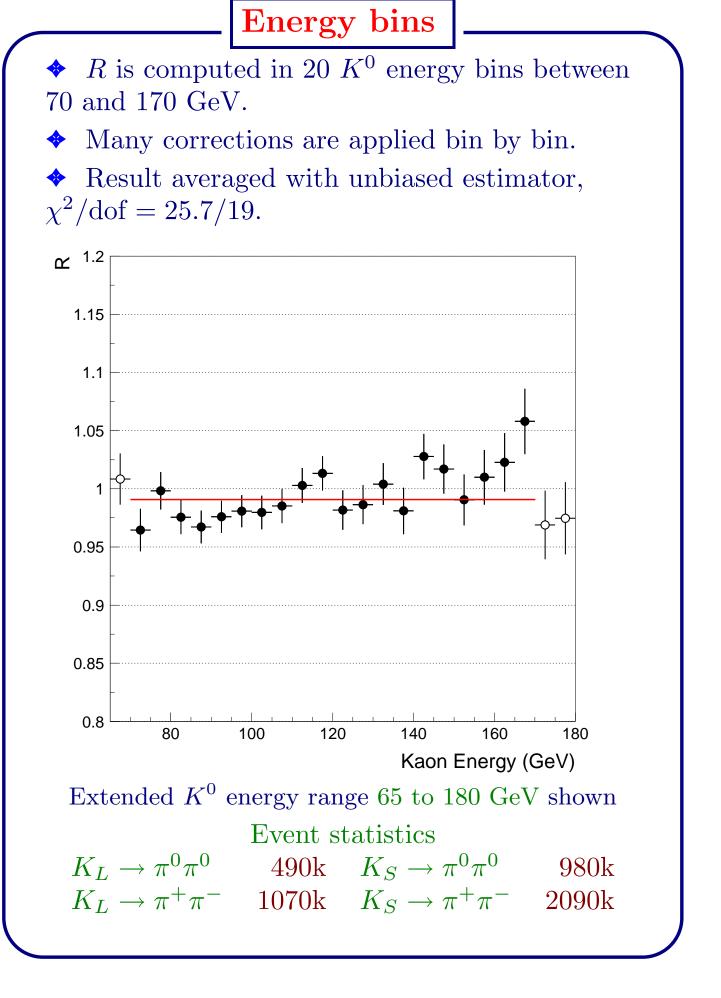
♦ Simultaneous beams $\Rightarrow K_S/K_L$ differential effects intrinsically small

• Most activity comes from K_L beam.

* Accidental activity for K_S and K_L measured to be the same at 1% level

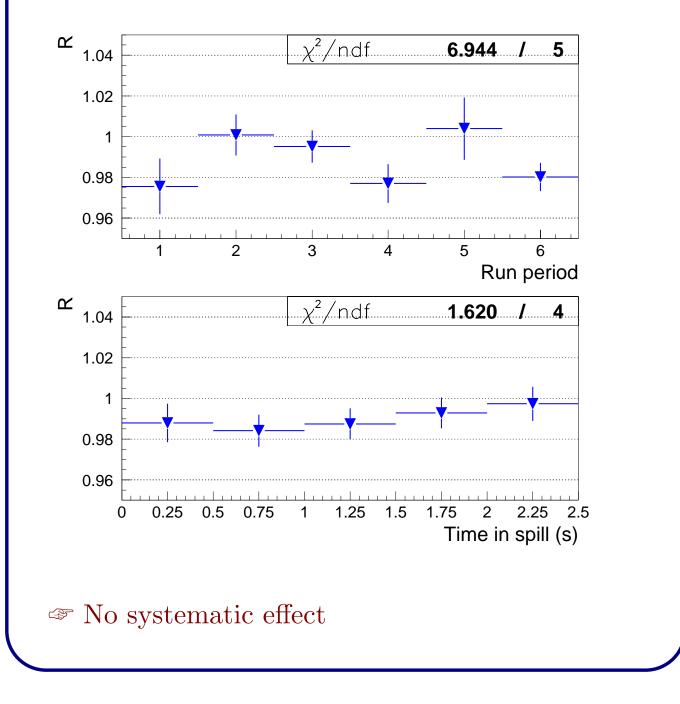
• "Randomly" triggered events proportional to K_L and K_S beam intensities are overlaid onto $\pi\pi$ events to measure event gains and losses:

 \triangleright losses – gains $\simeq 2\%$

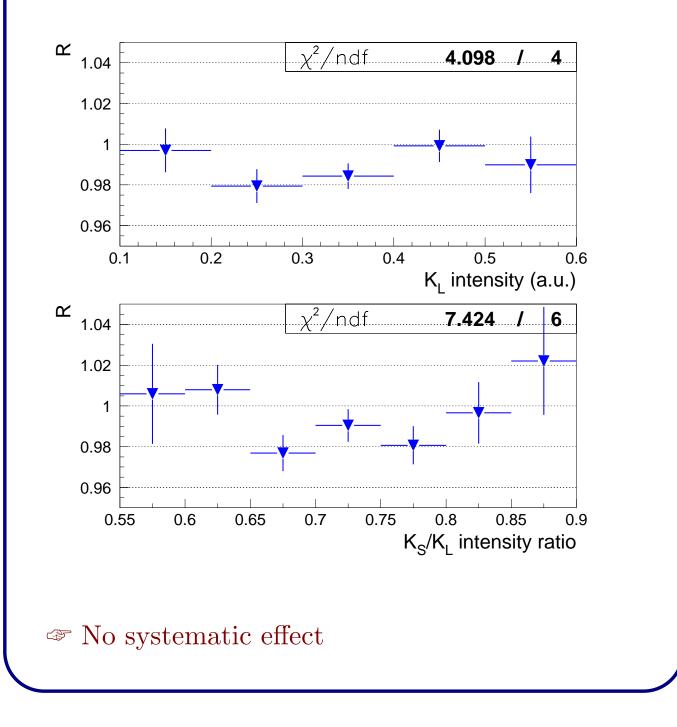

Double ratio correction: $(-2 \pm 14) \times 10^{-4}$

• In-time activity from close K_S target $< 3 \cdot 10^{-4}$

Corrections


	ΔR
	$(\times 10^{-4})$
Trigger efficiency	$+9 \pm 23$
Tagging	$+18 \pm 11$
Background	$+3\pm6$
Accidental activity	$+2 \pm 14$
Acceptance	$+29\pm12$
Energy scale/linearity	± 13
Total correction/uncertainty	$+57 \pm 35$

Event statistics						
$K_L o \pi^0 \pi^0$	490k	$K_S \to \pi^0 \pi^0$	980k			
$K_L \to \pi^+ \pi^-$	1070k	$K_S \to \pi^+ \pi^-$	2090k			


Time dependence

Run period dependence (changes in trigger and magnetic field configuration) and time in spill dependence:

Beam intensity dependence

 $\rm K_L$ beam intensity and $\rm K_S/\rm K_L$ intensity ratio dependence:

The result

$$\operatorname{Re}(\varepsilon'/\varepsilon) =$$

(18.5 ± 4.5 (event stat.) ± 5.8 (syst.)) ×10⁻⁴

Combining errors in quadrature:

$$\operatorname{Re}(\varepsilon'/\varepsilon) = (18.5 \pm 7.3) \times 10^{-4}$$

The systematic error is dominated by the statistical contribution of the control samples.

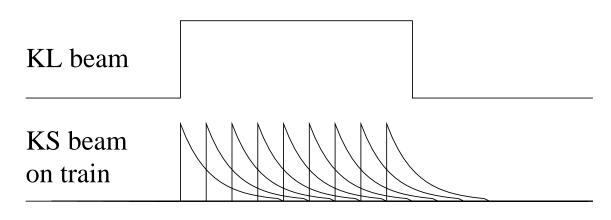
(PRELIMINARY)

The Future

 \blacklozenge 1998 run: mid May to September 1998

- $\triangleright \text{ All HV blocking capacitors of e.m.}$ calorimeter replaced \Rightarrow stable operation at 3 kV
- $\triangleright \text{ New carbon fibre beam pipe} \Rightarrow \text{reduced}$ overflows in DCH
- $\triangleright \text{ Charged trigger upgrade} \Rightarrow \text{higher efficiency} \\ \approx 0.97$
- \triangleright New DAQ $\Rightarrow +30\%$ trigger rate
- ▷ 3 times more $\pi^0 \pi^0$ statistics, 6 times more $\pi^+ \pi^-$ statistics
- \triangleright Statistical error on $\operatorname{Re}(\varepsilon'/\varepsilon) \approx 3 \cdot 10^{-4}$

♦ 1999 run: in progress


- \triangleright Improved DCH readout and DAQ
- $\triangleright\,$ Aim for more data than 1998 run

♦ 2000: Complement Statistics and Systematic studies

Comparison of techniques

NA31 somewhat different to NA48, E731, KTeV K_S target on train moved along fiducial volume. This produced a K_S decay distribution which was similar to the K_L distribution.

 \Rightarrow Like NA48, very small acceptance correction.

 K_S and K_L were taken separately

- Careful control of trigger, $\pi^+\pi^-/\pi^0\pi^0$ cancellation of all deadtime, daq hangs etc. was meticulously correct.
- Careful accidental studies, low activity
- Energy scale did not shift from K_S and K_L .

NA48 \leftrightarrow E731, KTeV differences more modest.

- Weighting technique.
- Two targets.

 $\operatorname{Re}(\varepsilon'/\varepsilon)$ Computations

$$\frac{\varepsilon'}{\varepsilon} = \frac{\omega}{\sqrt{2}|\varepsilon| \operatorname{Re}A_0} \left(\operatorname{Im}A_0 - \frac{1}{\omega} \operatorname{Im}A_2 \right)$$

Operator product expansion of $\text{Im}A_0$ and $\text{Im}A_2$:

$$\mathrm{Im}A_{0,2} = -\mathrm{Im}\lambda_t \frac{G_F}{\sqrt{2}} \sum_{i=3}^{10} y_i(\mu) \langle Q_i \rangle_{0,2}$$

- $\operatorname{Im}\lambda_t = \operatorname{Im}(V_{ts}^*V_{td}) = V_{us}|V_{cb}|\eta$ CKM elements
- y_i (short distance part) well known NLO QCD
- $\langle Q_i \rangle_{0,2}$ long distance, difficult, several approaches lattice, Chiral P.T. $1/N_c$, Chiral quark model

Big contributions from $\langle Q_6 \rangle_0$ and $\langle Q_8 \rangle_2$ which potentially cancel.

Illustrative formula ...

$$\frac{\varepsilon'}{\varepsilon} \cdot 10^4 \approx -2 + (16B_6 - 8B_8) \left[\frac{110 \text{ MeV}}{m_s (2 \text{GeV})} \right]^2$$

$$B_6 \qquad B_8 \qquad m_s (\text{MeV})$$

$$- \qquad 0.69 - 1.06 \qquad 110 \pm 20$$

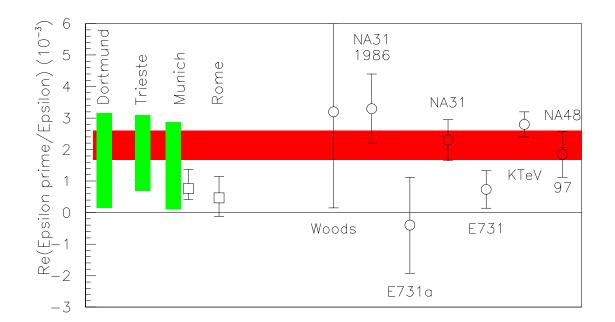
$$1 \qquad 1 \qquad 124 \pm 22$$

$$0.72 - 1.10 \qquad 0.42 - 0.64 \qquad \ge 100$$

$$1.07 - 1.58 \qquad 0.75 - 0.79$$

Consequently it is not too easy to get ε'/ε as big as the measured values.

$\operatorname{Re}(\varepsilon'/\varepsilon)$ Computations


Predictions ($\times 10^4$):

Rome	Munich	Trieste	<u>Dortmund</u>
(1999)	(1999)	(1998)	(1999)
$4.7^{+6.7}_{-5.9}$	$7.7^{+6.0}_{-3.5}$		
	$1.1 \rightarrow 28.8$	7 ightarrow 31	$1.5 \rightarrow 31.6$

Conclusions

The NA48 value for $\operatorname{Re}(\varepsilon'/\varepsilon)$ based on 10% of the data is

 $\operatorname{Re}(\varepsilon'/\varepsilon) = (18.5 \pm 7.3) \times 10^{-4}$

A consistent experimental picture is emerging, $\operatorname{Re}(\varepsilon'/\varepsilon)$ is larger than zero.

Average $(21.3 \pm 4.6) \times 10^{-4}$ with P.D.G.-style scaling.

Future data from NA48, KTeV and Kloe (see next talk) will reduce errors to the 1×10^{-4} level – a 5% measurement.

Challenges for theoretical predictions - which prefer a lower $\operatorname{Re}(\varepsilon'/\varepsilon)$ than measured.

New physics ? — premature