CESR and CLEO

Lepton Photon 99 Klaus Honscheid Ohio State University

Where to "B"

To measure a key CP parameter $(sin(2\beta))$ to ~ 10 % requires: a few hundred $B^{0\rightarrow}$ $J/\psi K_s$ events

+ fully reconstructed, flavor tagged

+ BR's, efficiency, tagging...

 \Rightarrow 3 0x 10BB events (Y (4 S))

e⁺e⁻ Annihilation

Hadro-Production

 $\sigma \sim 100 \ \mu b \ (Tevatron) \\ S \ /N \sim 1/500$

CES R Performance

CLEO Datasample			CLEO II.V Integrated Luminosity (9 fb ¹)
	on 4 S	Cont. [f]	losity (fb ¹
CLEO II	3.1	1.6	e la
CLEO II.5	6.2	2.8	ated]
Total	9.3	4.4	Integr
			0 5 5 5 5 5 5 5 5 5 5 5 5 5

CES R Performance

CES R Upgrades

S uperconducting R F

- More Power
 - ⇒ 1 A beam current
- Less Impedance
 - \Rightarrow 4 R F cells vs. 20
 - \Rightarrow R educed Instabilities
- Higher Gradient

⇒S horter Bunches

• Installed

S uperconducting Quads

- Better focus
 - $\Rightarrow \beta^*$ from 18 to 13 mm
- S pring 2000

📕 Apr 97 - 4 N R 📕 N 00 vS 93 8F - 2 N R 🖬 M 2a vS 93 9F - 0 N F F; 3 S R F

Ex pect to reach 2 x 10^{cm⁻²} s⁻¹ sometime nex t Y ear.

Charged Particle Tracking

Charged Multiplicity ~ 10 Typical Momentum ~ 700 MeV/c down to 100 MeV/c

Momentum R esolution = f(Length, Multiple S cattering)

CLEO II \Rightarrow CLEO III: 20 cm smaller radius (R ICH) Final focus quads

- R educed Multiple S cattering

Inner Gas S eal

2.5 mm R ohacell with 20 m Al skins $X_o < 0.15\%$ No support function

Test Beam R esults (CLEO II.5)

CLEO III Driftchamber

Tapered Inner S ection 8 rings, 1696 ax ial cells 16 layers

Conical Endplate 0.6"Al, 3" pitch 8100 cells 3 1 stereo layers

TTON

CAUTION CAUT

Moving Day

Endplate View

Klaus Honscheid, LP 99

Charged Particle Tracking

S ilicon Vertex Detector

4 Layers of double sided silicon detectors, 3 00m thick. Only active elements and minimal support material in detector fiducial region

No support structure outside outermost silicon layer. Conical support structure to max imize acceptance.

R ead Out Electronics

- Up to 5 silicon sensors daisy-chained to one readout.
- R adiation hard (100 kR ad)
- Very low noise, Viking based Front-End chip.
- Back-End chip based on S VX II
- BeO Hybrids mounted on copper cones (cooling)
- S /N > 15:1 (worst case)

Vertex Detector Assembly

Layer 4

Detecting Neutral Particles

1.00

1.10

With good resolution (at low energies) and high granularity try:

$$\pi^0$$
's

1.20

w

1.30

1.40

1.50

— Electromagnetic Calorimeter

- CLEO pioneered use of CsI calorimeter
- 7800 crystals.
- 2% energy resolution at 1 GeV.
- 4 mr angular resolution at 1 GeV.
- no radiation damage observed.
- reduced material in front of endcaps.
- All B-Factories use CsI calorimeter

Klaus Honscheid, LP 99

R e-S tacking t Calorimeter Endcap

Particle Identification

- **S** earch for $B \rightarrow \pi \pi$ and $B \rightarrow K \pi$
- important for CP
- very rare $B^0 \rightarrow K^+\pi^- = 1.8 \times 10^5$ $B \rightarrow \pi\pi = ?$

CLEO gets R ICH

- $4\sigma \text{ K}/\pi$ separation at 3 GeV
- LiF radiator, saw tooth + plane
- N₂ ex pansion volume (16 cm)
- TEA/CH₄ based photo detector
- ~250,000 electronic channels

Particle Identification

Photon Detection

MWPC + Pad R eadout ~23 0,000 pads (8 mm x 7.5 mm) TEA/CH₄ Gas gain ~25,000

8 CaF windows 100 μm strips, every 2.5 mm (field shaping) G10 frame (and ribs for flatness)

CaF, LiF Transmission ~ 90%

R ICH Assembly

Arrival at Wilson Lab

