SLD Bs Mixing Review

Bs Mixing Using Ds + Tracks

Cheng-Ju Lin
University of Massachusetts, Amherst
March 16, 2000

OUTLINE:

- Review of Ds+Tracks
- Ds selection using Neural Nets
- B vertex reconstruction
- Plan of action for the coming months
Ds+Track(s) Analysis

- Reconstruct Ds --> (φπ, K*K) to enhance purity and to tag the final state of the Bs
- Bs fraction >30%
- B decay length resolution ~50µm (60% core) !!!
Ds + TRACKS RESULTS (SUMMER 1999)

Amplitude fit

- REC97-98 DATA

Sensitivity Curve (1.64σ)

Amplitude

Δm_s (ps^{-1})

Sensitivity can be improved by:

- Better resolution (B vtx and boost)
- Higher statistics/efficiency

Amplitude at ΔM_s=15ps^{-1}

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Amplitude</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH D.1 (91-98)</td>
<td>4.65 ± 3.74</td>
<td>4.1 ps^{-1}</td>
</tr>
<tr>
<td>ALEPH D.h (91-98)</td>
<td>2.00 ± 1.29</td>
<td>9.5 ps^{-1}</td>
</tr>
<tr>
<td>ALEPH 1 (91-98, no D.j)</td>
<td>-0.14 ± 2.00</td>
<td>5.1 ps^{-1}</td>
</tr>
<tr>
<td>CDF 1b/l (92-98, prel.)</td>
<td>0.05 ± 3.58</td>
<td>3.2 ps^{-1}</td>
</tr>
<tr>
<td>DELPHI B + D.b (92-98, prel.)</td>
<td>-0.54 ± 1.90</td>
<td>8.2 ps^{-1}</td>
</tr>
<tr>
<td>DELPHI D+eol (92-98, prel.)</td>
<td>3.59 ± 2.91</td>
<td>6.5 ps^{-1}</td>
</tr>
<tr>
<td>DELPHI 1 (92-98, prel.)</td>
<td>-1.25 ± 2.34</td>
<td>7.2 ps^{-1}</td>
</tr>
<tr>
<td>OPA1.1 (91-95)</td>
<td>0.84 ± 1.69</td>
<td>3.5 ps^{-1}</td>
</tr>
<tr>
<td>SLD 1 + D (96-98, prel.)</td>
<td>0.21 ± 2.63</td>
<td>0.1 ps^{-1}</td>
</tr>
<tr>
<td>SLD 1 (96-98, prel.)</td>
<td>-1.06 ± 1.43</td>
<td>5.4 ps^{-1}</td>
</tr>
<tr>
<td>SLD dipole (96-98, prel.)</td>
<td>0.64 ± 0.64</td>
<td>14.7 ps^{-1}</td>
</tr>
<tr>
<td>World average (prel.)</td>
<td>0.28 ± 2.4</td>
<td>-0.5 ps^{-1}</td>
</tr>
</tbody>
</table>

SLD Ds+Tracks (97-98)
What’s new with the analysis?

• Using Neural Net to enhance the efficiency of Ds selection
 10(inputs) : 12(hidden nodes) : 1 (output)

Inputs for $\phi \pi$ mode:

- M_{KK}, $P_{\text{tot}}(Ds)$, $K^+ K^-$ opening angle, Ds vtx prob, normalized Ds decay length (w.r.t. IP), ϕ helicity angle (in Ds rest frame), K^+ helicity angle (in ϕ rest frame), and 3 CRID (CKID) codes.

Inputs for $K^* K$ mode (required definite kaon from K^*):

- $M_{K\pi}(K^*)$, K(from K^*) π opening angle, Ds vtx prob, Normalized Ds decay length, ave. 3-D impact parameter of the Ds tracks, K^* helicity angle (in Ds frame), K^+ (from direct Ds decay) helicity angle in K^* frame, 2 CRID (CKID) for π and kaon(from direct Ds).

• Studied the feasibility of other Ds decay mode:
 Ds --> $\phi \, l \, \nu$, $\phi \, \pi \, \pi \, \pi$, and $K^0 \, K$
NEURAL NET OUTPUTS

- Using Stuttgart Neural Net package for the training

\[\phi \pi \text{ Mode} \]

\[K^* K \text{ Mode} \]

\[\text{97-98 R16Data} \]

\[\text{MC} \]

\[\text{MC True Ds} \]
Neural Net Results (efficiency vs purity)

• Significant improvements in efficiency and purity
 Efficiency improves (given the same purity)
 by \sim50% for both modes!!!
Ds Invariant Mass Plots

$\phi\pi$ Mode (NN>0.95)

- 97-98 R16Data
- MC
- MC True Ds

$K^* K$ Mode (NN>0.9)

- MC 97-98 $q\bar{q}$
- MC True Ds

$M_{kk\pi}$ (GeV)

$M_{k\pi k}$ (GeV)
Other Ds Decay Modes

Ds → φ l ν

Ds → φπππ

Ds → K^0 K

- These modes are fairly messy and probably will not contribute much to the analysis.

- Put these modes on hold for now
Can We Further Improve the Decay Length Resolution?

- Current algorithm selects seed vtx by fitting all trks in the hemisphere individually with the “virtual” Ds trk, the vtx furtherst from the IP (upstream of Ds) is selected as the seed vtx for track attachments --> seed vtx resolution of ~ 70µm
- Pick the highest momentum trk (with 3-D impact param > 3σ) in the hemisphere as the the seed trk gives a seed vtx resolution of ~ 57 µm
Decay Length and Seed Vtx Resolutions

Out-side-in Seed vtx

70µm (core)
250µm (tail)

Max Ptot Seed vtx

57µm (core)
193µm (tail)

Out-side-in B vtx

53µm (core)
188µm (tail)

Max Ptot B Vtx

49µm (core)
147µm (tail)

Looks good but
• Max Ptot method improves resolution but has lower efficiency at short decay length
• Combining both techniques may be the way to go
PLAN OF ACTION FOR THE NEXT FEW MONTHS

- Optimize NN cuts for $\phi\pi$ and $K*K$ (base on Moser’s formula)
- Incorporate new boost routine from D. Dong (expect significant improvements)
- Include “kitchen sink” initial state tagging routine
- Study VXD alone vectors (improve B vtx charge purity)
- Study the enhancement from Bs \rightarrow Ds $l\nu$ events
- Freeze all development work by mid-April and move on to finalize the data amplitude fit.
- Combine the result with the other SLD mixing analyses.