Motivation: precise weak mixing angle, Z-width msmts
- see Marciano’s talk
- uncertainty in $\sin^2 \theta_W^{\text{eff}}$ vs #Zs

Polarimetry measurements, depolarization effects

Energy measurements, beamsstrahlung effects

Z-rate effects (multiple Zs per train)

Luminosity measurements, luminosity asymmetries

Extraction Line Design
Error on $\sin^2 \theta_w^{\text{eff}}$ vs. Zs Detected

$P=90\%$

- $\Delta P/P = 0.1\%$ ($\Delta E=8$ MeV)
- $\Delta P/P = 0.25\%$ ($\Delta E=20$ MeV)
- $\Delta P/P = 0.5\%$ ($\Delta E=40$ MeV)

Z's Detected

Error on $\sin^2 \theta_w^{\text{eff}}$
Error on $\sin^2\theta_w^{\text{eff}}$ vs. Zs Detected

$P = 90\%$
$P^+ = 50\%$

- $\Delta E = 1.6 \text{ MeV}$
- $\Delta E = 4 \text{ MeV}$
- $\Delta E = 8 \text{ MeV}$

Z's Detected
Tor’s NLC-90 Parameters

<table>
<thead>
<tr>
<th></th>
<th>Preliminary! IP Parameters for low energy IR</th>
<th>TESLA-90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90 GeV</td>
<td>250 GeV</td>
</tr>
<tr>
<td></td>
<td>Nominal</td>
<td>Semi-High</td>
</tr>
<tr>
<td>Luminosity (10^{33})</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Pinch Enhancement</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Bunch Charge (10^{10})</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>Bunches/RF Pulse</td>
<td>95</td>
<td>190</td>
</tr>
<tr>
<td>Bunch Separation (ns)</td>
<td>2.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Injected $\gamma\epsilon_x / \gamma\epsilon_y$ (10^{-6})</td>
<td>300 / 3</td>
<td>300 / 2</td>
</tr>
<tr>
<td>$\gamma\epsilon_x$ at IP (10^{8} m-rad)</td>
<td>400</td>
<td>360</td>
</tr>
<tr>
<td>$\gamma\epsilon_y$ at IP (10^{8} m-rad)</td>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>Tolerances</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>β_x / β_y at IP (mm)</td>
<td>10 / 0.10</td>
<td>10 / 0.10</td>
</tr>
<tr>
<td>σ_x / σ_y at IP (nm)</td>
<td>670 / 6</td>
<td>632 / 6</td>
</tr>
<tr>
<td>σ_z at IP (um)</td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>L0 / Ltotal (%)</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>Yave</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Beamstrahlung δB (%)</td>
<td>0.28</td>
<td>0.22</td>
</tr>
<tr>
<td>Photons per e+e-</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Polarization loss (%)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Polarization Measurements

Two Possibilities at NLC-90: Compton polarimetry and ‘Blondel scheme’

1. Only electron beam is polarized.

Use Compton Polarimetry:

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>SLC-90 $\delta P/P$</th>
<th>NLC-90 Goal $\delta P/P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Pol.</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Linearity</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Electr. Noise</td>
<td>0.2%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Anal. Pwr. Cal.</td>
<td>0.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td>0.50%</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

- use multichannel electron spectrometer (and if possible, Compton gamma detector in dedicated electron-only runs)
- check calibration against W-pair asymmetry when operate above W-pair threshold!
- correct for any depolarization effect (expected to be <0.1%) by comparing polarization measurement with and without collisions
2. Both electron and positron beams are polarized.

\[P^- = 90\%, P^+ = 50\% \]
\[\frac{\delta P^-}{P^-} = 0.25\%, \frac{\delta P^+}{P^+} = 0.25\% \]

\[P_{\text{eff}} = \frac{P^- + P^+}{1 + P^-P^+} = 96.55\% \]
\[\frac{\delta P_{\text{eff}}}{P_{\text{eff}}} = 0.10\% \]

\[\frac{N_{LR} - N_{RL}}{N_{LR} + N_{RL}} = P_{\text{eff}} A_{LR} \]

Can also use ‘Blondel scheme’ to determine beam polarizations directly:

\[\frac{N_{LL} + N_{LR} - N_{RL} - N_{RR}}{N_{LL} + N_{LR} + N_{RL} + N_{RR}} = P^- A_{LR} \]
\[\frac{N_{RR} + N_{LR} - N_{RL} - N_{LL}}{N_{RR} + N_{LR} + N_{RL} + N_{LL}} = P^+ A_{LR} \]

- using Blondel technique, just need Compton polarimeters for measuring polarization differences between L,R states;
 and only need to spend approx. 10% of running time in N_{RR}, N_{LL} states
- this technique directly measures lum-wtied polarizations (any depolarization effect properly taken into account)
Polarized Positrons?

\[\frac{N_{LR} - N_{RL}}{N_{LR} + N_{RL}} = P_{eff} A_{LR} \]

Need to understand relative detector efficiency for ‘RL’ and ‘LR’ modes at level of 10^-4

Need to measure polarization difference, \(P_R^+ - P_L^+ \), at level of 10^-3

This will be difficult unless can measure these modes simultaneously, ie. can switch positron polarization randomly pulse-to-pulse, as is done for electrons.

Note: even if positrons are nominally unpolarized, need to verify this!

\[\delta(A_{LR}) = P^+ \]

For \(\delta(A_{LR}) = 4 \times 10^{-4} \), want \(\delta(P^+) < 2 \times 10^{-4} \). SLD’s ‘posipol’ measurement achieved \(\delta(P^+) = 7 \times 10^{-4} \). (This is relevant for electron-only \(A_{LR} \) measurement, which is a factor 5 better than SLD’s result.)
Beam Energy/Spectrum Measurements and Luminosity Spectra Measurements

The Lum-wted E_{CM} needs to be accurately determined. This requires an accurate measurement of the undisrupted beam energy and a correction for beamstrahlung effects. To correct for the beamstrahlung, there are 2 approaches:

Method 1 uses beam energy and beam spectrum diagnostics for measuring both the disrupted and undisrupted beam. (SLD approach)

Method 2 uses a beam energy measurement for the undisrupted beam, and a luminosity spectrum measurement -- ex. small angle Bhabhas. (proposed approach for top threshold scan)

1. Beam Energy/Spectrum Measurements
 i) SLC-style Synchrotron Spectrometer
 ii) LEP2-style BPM Spectrometer
 iii) Moller/Bhabha Scattering from a hydrogen gas jet target (was proposed but not built for LEP2)
 iv) wire scans at a high dispersion point

 - for absolute calibration of these devices, can cross-calibrate to Z Mass with a Z-peak scan (what will be time stability of these calibrations -- hours? days?)
2. Luminosity Spectra Measurements
 - use small angle Bhabha event kinematics (energies, angles) to deduce
 beamstrahlung effect given undisrupted beam energy measurement
 and ISR calculations
 - this has been studied for top threshold scans to determine energy scale
 uncertainty at level of 100 MeV
 - Panvini is using SLD mu-pair events in a similar way; in progress

Both Method 1 and Method 2 need a detailed study to determine if can
reach desired energy-sensitivity for $\delta(E_{CM}^{lum-wt})$ of 1-10 MeV

Next, some Guinea-Pig simulations of beamstrahlung effects for
 i) SLC-90
 ii) NLC-90
 iii) TESLA-90 (Nominal and Low)
These will illustrate the size of the beamstrahlung corrections needed.
(my feeling is it will be hard, but perhaps possible, to understand
such corrections with 10% accuracy -- I’m very skeptical of
achieving 1% accuracy in these corrections; SLD estimate was 33%)

Compare Beamstrahlung Energy Losses at SLC-90 and NLC-90

SLC: \[L = 2.0 \cdot 10^{30} \text{ cm}^{-2} \text{s}^{-1} \]

NLC: \[L = 1.3 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1} \]

‘Guinea-Pig’ Simulation
Luminosity Spectra with and without ISR

ISR + Beamstrahlung

Beamstrahlung Only
Lum-wted E_{CM} Corrections

SLC-90

$L = 2.4 \cdot 10^{30} \text{cm}^{-2}\text{s}^{-1}$

Mean Energy Loss = 49 MeV

NLC-90

$L = 1.3 \cdot 10^{33} \text{cm}^{-2}\text{s}^{-1}$

Mean Energy Loss = 125 MeV

TESLA-90 (Nominal)

$L = 6.4 \cdot 10^{33} \text{cm}^{-2}\text{s}^{-1}$

Mean Energy Loss = 44 MeV

TESLA-90 (Low)

$L = 2.0 \cdot 10^{33} \text{cm}^{-2}\text{s}^{-1}$

Mean Energy Loss = 15 MeV
Using NLC-90 Nominal and Tesla-90 Nominal, but increasing β_x by x9.

NLC-90

$$L = 2.9 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} \text{ @ 60Hz}$$
$$L = 8.6 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} \text{ @ 180Hz}$$

TESLA-90

$$L = 1.5 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
Z-Rate Effects
(Multiple Zs per train)

Z Cross-section: \(\sigma^Z = 30 \text{ nb} \),
NLC-90 Luminosity: \(L = 1.3 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \)

Z Rate: \(R = \sigma^Z \times L = 39 \text{ Z/s} \)

Rep rate = 60Hz, so Z Rate = 0.65 Z/train
=> 52% probability for 0 Zs in a given train
34% probability for 1 Z in a given train
14% probability for 2 or more Zs in a given train!!

With a data sample of >10^8 Zs, need to understand Z multiplicity distribution with better than 0.02% accuracy

For TESLA-90 (Low), R = 60 Z/s = 0.0043Z/bunch
=> 99.57% probability for 0 Zs in a given bunch
0.43% probability for 1 Z in a given bunch
9.2e-6 probability for 2 or more Zs in a given bunch
so with data sample of >10^8 Zs, need to understand Z multiplicity distribution with better than 5% accuracy
Luminosity Measurements and Backgrounds

SLD achieved luminosity asymmetries \(\approx 10^{-4} \).

SLAC E158 is working to achieve luminosity asymmetries \(<< 10^{-6} \)

Can measure luminosity asymmetries with small angle Bhabha detectors. For data samples of \(>10^8 \) Zs, need to understand luminosity asymmetries to better than \(10^{-4} \). This should be achievable (though could be difficult if different polarization modes are not taken simultaneously).

Need to understand non-Z backgrounds at level of \(10^{-4} \). SLD result was \(3 \times 10^{-4} \).
Extraction Line Design

For precise NLC-90 measurements, the extraction line design may not be compatible with high luminosity running of the low energy IR!

May need to reconfigure some aspects of the extraction line between different running modes.
Z Linewidth Measurement

LEP1 Result: 5M Z peak scan gives $\delta(\Gamma_Z) = 2.1$ MeV (stat); $\delta(\Gamma_Z) = 2.4$ MeV (stat+syst)

Systematic errors:

i) Beam Energy measurement: 1.2 MeV

ii) Uncertainty in center-of-mass energy spread

$$\delta(E_{CM}^{rms}) = 1\text{MeV} \Rightarrow \delta(\Gamma_Z) = 0.2\text{MeV}$$

(At LEP1, beam energy spread = 37 MeV; 0.08%)

Could NLC-90 or TESLA-90 achieve $\delta(\Gamma_Z) = 1.0$ MeV (stat+syst)??

Very unlikely (though easier at TESLA)

- don’t have resonant depolarization; need very detailed study to demonstrate feasibility of alternate technique achieving < 1MeV

- want beamsstrahlung correction on $E_{CM}^{\text{lum-wt}} < 10$ MeV so only need to know correction to 5-10%; but want luminosity high so scan can be done quickly

- need to understand E_{CM} energy spread to < 3-5 MeV

(NLC-90 0.3% beam energy spread gives E_{CM} energy spread = 190 MeV)

A better electroweak measurement is to improve W mass msmt to $\delta(M_W)$=5-10 MeV

- current uncertainty is 38 MeV (expected to improve to 25 MeV with LEP2 and Tevatron Run 2)

- 5-10 MeV should be achievable at NLC-180, TESLA-180
S-T Plot for All Electroweak Data

- $S = -0.02 \pm 0.10$
- $T = -0.02 \pm 0.10$
- $M_H < 196 \text{ GEV (95\%)}$

(from M. Swartz)
SUMMARY

With only the electron beam polarized, 90%,

- can improve SLD’s A_{LR} measurement by x5 with 0.25% polarimetry
 and with modest luminosity (use $L=4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$) to accumulate
 50M Zs in 0.4 Snowmass-years. Beamstrahlung correction for
 $E_{CM}^{\text{lum-wt}}$ should only be about 40 MeV and need to know
 this with 10 MeV accuracy. **But still need to study problem of
 understanding the Z multiplicity (to approx 0.2%).** (This
 measurement is much easier at TESLA-90.)

With $P^- = 90\%$ and $P^+ = 50\%$,

- to improve SLD’s A_{LR} measurement by x10 or more,
 need to understand $E_{CM}^{\text{lum-wt}}$ at 5 MeV level and to understand
 Z multiplicity at level of 0.02% at NLC (5% at TESLA-90).
 This measurement probably only makes sense at TESLA-90.

To measure Z width to 1 MeV,

- Too hard at NLC-90. Possible, but unlikely, at TESLA-90.
 (But improving W mass measurement to 5-10 MeV
 should be achievable at NLC-180, TESLA-180.)