
The SIO Manual Version 1.0

A.P.Waite 8 November 1999

Version 1.0 The SIO Manual

8 November 1999 Version 1.0

The SIO Manual Table of Contents

Version 1.0 i

0 What Is SIO? 1

0.1 Features Provided by SIO 1

0.2 Features NOT Provided by SIO 1

1 Technical Overview 3

1.1 Building Blocks 3

1.2 Navigation Format 4

1.3 Data Representation 5

2 Coding SIO Blocks 9

2.1 The ‘version’ Method 11

2.2 The ‘xfer’ Method 11
2.2.1 A Simple Write Routine 12

2.2.2 The Corresponding Read Routine 14

2.3 The Real World 14

3 Pointers 17

3.1 Pointer To and Pointed At 17

3.2 Pointer Example 18
3.2.1 Pointer Length 22

3.2.2 NULL pointer handling 23

3.3 Good Points About SIO Pointer Handling 23

3.3 Ambiguous Points About SIO Pointer Handling 23

3.3 Bad Points About SIO Pointer Handling 23

4 Class Descriptions 25

4.1 Common Features 25
4.1.1 SIO Names 25

4.1.2 SIO Condition Codes 25

4.1.2 SIO Enumerations 26

4.1.3 SIO Error Reporting 26

What Is SIO? The SIO Manual

ii Version 1.0

4.2 SIO Managers 26
4.2.1 SIO_streamManager Methods 27

4.2.2 SIO_recordManager Methods 28

4.2.3 SIO_blockManager Methods 28

4.3 SIO_stream Methods 29

4.4 SIO_record Methods 31

4.5 SIO_block Methods 33

4.6 A Fake Example 33

5 Questions And Answers 37

The SIO Manual What Is SIO?

Version 1.0 1

0 What Is SIO?

Serial Input/Output (SIO) is designed to be a long term storage format of a
sophistication somewhere between simple ASCII files and the techniques
provided by inter alia Objectivity and Root. The former tend to be low density,
information lossy (floating point numbers lose precision) and inflexible. The latter
require abstract descriptions of the data with all that that implies in terms of extra
complexity.

0.1 Features Provided by SIO
Architecture independent binary format.

A high integrity, self-checking data layout.

Multiple simultaneously open input and output streams.

Heterogeneous record types on each stream.

Pointer relocation at the level of a record.

On the fly data compression/decompression.

0.2 Features NOT Provided by SIO
Abstract data descriptions (i.e. self describing data).

Pointer chasing.

What Is SIO? The SIO Manual

2 Version 1.0

The SIO Manual Technical Overview

Version 1.0 3

1 Technical Overview

1.1 Building Blocks
The basic building blocks of SIO are streams, records and blocks.

Streams provide the connections between the program and files. The user can
define an arbitrary list of streams as required. A given stream must be opened for
either reading or writing. SIO does not support read/write streams. If a stream is
closed during the execution of a program, it can be reopened in either read or
write mode to the same or a different file.

Records represent a coherent grouping of data. Records consist of a collection of
blocks (see next paragraph). The user can define a variety of records (headers,
events, error logs, etc.) and request that any of them be written to any stream.
When SIO reads a file, it first decodes the record name and if that record has been
defined and unpacking has been requested for it, SIO proceeds to unpack the
blocks.

Blocks are user provided objects which do the real work of reading/writing the
data. The user is responsible for writing the code for these blocks and for
identifying these blocks to SIO at run time. To write a collection of blocks, the
user must first connect them to a record. The record can then be written to a
stream as described above. Note that the same block can be connected to many
different records. When SIO reads a record, it scans through the blocks written
and calls the corresponding block object (if it has been defined) to decode it.
Undefined blocks are skipped.

Each of these categories (streams, records and blocks) have some characteristics
in common. Every stream, record and block has a name with the condition that
each stream, record or block name must be unique in its category (i.e. all streams
must have different names, but a stream can have the same name as a record).

Technical Overview The SIO Manual

4 Version 1.0

Each category is an arbitrary length list which is handled by a ‘manager’ and there
is one manager for each category.

1.2 Navigation Format
The above definitions of streams, records and blocks allow SIO to write
‘navigable’ datasets. Ignoring details of data representation and the contents of the
blocks, an SIO dataset is composed of a series of records which look like (each
box represents four bytes):

• Length of Record Header. Four bytes. Length of the record header in bytes
(including the four bytes needed for this number). Always a multiple of four.

• Record Framing. Four bytes. A weird hex value (actually 0xabadcafe) which
tries to identify what follows as a record. Not foolproof, but pretty good.

• Options Word. Four bytes. Reserved for SIO. Currently only the least
significant bit is used. When set, the record content that follows has been
compressed.

• Length of Record Content (compressed). Four bytes. Total length in bytes for
all the blocks in the record. Always a multiple of four. If the record is not
compressed, it contains the same value as…

• Length of Record Content (decompressed). Four bytes. Total length in bytes
for all the blocks in the record when decompressed. Always a multiple of four.
When the record is not compressed, it is a count of the bytes that follow in the

Length of Record Header
Record Framing Word

Length of Record Name
Record Name

Length of Block

(next block)

Length of Block Name

Block Framing

Block Name

Block Version

Block Data

Options Word

Length of Record Content (decompressed)
Length of Record Content (compressed)

The SIO Manual Technical Overview

Version 1.0 5

record content. When the record is compressed, this number is used to allocate
a buffer into which the record is decompressed.

• Length of Record Name. Four bytes. Length of the record name specified by
the user. This is a character count and can take any value.

• Record Name. Arbitrary length, but padded with zeros to a four byte
boundary. Standard ASCII encoding. Name of the record (surprise!).

• Length of Block. Four bytes. Length of the block in bytes (including the four
bytes needed for this number).

• Block Framing. Four bytes. Another weird hex value (actually 0xdeadbeef)
which tries to identify what follows as a block. Same caveats as ‘Record
Framing’.

• Block Version. Four bytes. My attempt to enforce some versioning
information. All blocks must provide a version number to allow block
evolution while preserving readability of old datasets.

• Length of Block Name. Four bytes. Length of the block name specified by the
user. This is again a character count and can take any value.

• Block Name. Arbitrary length, but padded with zeros to a four byte boundary.
Standard ASCII encoding. Name of the block (surprise!).

• Block Data. Arbitrary length. The data written/read by the user’s block object.

With this format, SIO can read down the dataset skipping blocks or records if
they’re not requested. It can also detect and recover from data overruns or
underruns by the user provided block readers (though continuing to work with a
record after such an error is highly questionable).

1.3 Data Representation
The previous section carefully ignored the representation of (for instance) the four
bytes giving the ‘Length of Record Header’. That’s because I didn’t want to get
sidetracked into a discussion of endian-ness while discussing navigation. Endian-
ness will not be ignored however, so I invite you to consider the following
program:

Technical Overview The SIO Manual

6 Version 1.0

#include <stdio.h>

struct _buffer {
 union {
 unsigned char u_byte[4];
 unsigned int u_int;
 } data;
} buffer;

int main()
{
 int i;

 for(i = 0; i < 4; i++)
 {
 buffer.data.u_byte[i] = i;
 }

 printf(“0x%08x”, buffer.data.u_int);
 return 0;
}

Try this on a big-endian architecture (PowerPC (AIX), sparc (SunOS)) and you
will get 0x00010203. Try it on a little-endian architecture (alpha (DEC/OSF1),
x86 (Linux or Windows/NT)) and you’ll get 0x03020100. Not good when trying
to construct datasets readable by all architectures!

There were, and possibly still are, middle-endian architectures! A wholly mind-
boggling concept matched only by the oxymoronic name.

Swiftian wars are of course fought between those that favour one endian-ness
over the other. Whatever the merits of their cases, SIO has to deal with both
varieties. The SIO solution is to adopt the xdr format. If you look xdr up on the
web you will find many learned documents both defining the format and
discussing its merits. For our purposes, xdr can be summarized with two rules:

• xdr is always big-endian.

• Any single xdr write will pad with zeros up to the next four byte boundary
(and equivalently, xdr reads will skip forward to the next four byte boundary).

Voila, everything you need to know about xdr!

Users should be aware of that second rule. Ignorance can lead to large
inefficiencies. The following examples will use SIO techniques which haven’t
been described yet, but the intent should be clear:

The SIO Manual Technical Overview

Version 1.0 7

 int i;
 int list[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 .
 .
 for(i = 0; i < 10; i++)
 {
 SIO_DATA(stream, &list[i], 1);
 }
 .
 .

Example 1

 int list[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 .
 .
 SIO_DATA(stream, &list[0], 10);
 .
 .

Example 2

Example 1 uses 10 writes to output 10 bytes, but each byte gets padded to the next
four byte boundary for a total of 40 bytes. Example 2 uses 1 write to output 10
bytes which then gets padded out to 12 bytes. A factor of three saving!

Technical Overview The SIO Manual

8 Version 1.0

The SIO Manual Coding SIO Blocks

Version 1.0 9

2 Coding SIO Blocks

User blocks are coded as descendants of the abstract class SIO_block. In the
implementation of a new block, the user must override the pure virtual methods
version and xfer and call the constructor for the base SIO_block. After
adding SIO capability to an existing object foo, foo.h might look something like
this:

.

.
#include “SIO_block.h”
class SIO_stream;
.
.
class foo : public SIO_block
{

public:
 //
 // Add an extra argument to the foo constructor to take the block name.
 //
 foo(..., const char*);
 .
 .
 //
 // SIO required functions.
 //
 unsigned int version();
 unsigned int xfer(SIO_stream*, SIO_operation, unsigned int);

private:
 .
 .
};

Coding SIO Blocks The SIO Manual

10 Version 1.0

And foo.cxx something like:

.

.
#include “foo.h”
.
#include “SIO_definitions.h”
#include “SIO_functions.h”
.
.
// --
// Constructor.
// --
foo::foo(..., const char* i_name) : SIO_block(i_name)
{
.
// <standard constructor stuff (nothing to do with SIO)>
.
}

// --
// Perform SIO transfer.
// --
unsigned int foo::xfer
(
 SIO_stream* stream,
 SIO_operation op,
 unsigned int version
)
{
.
// <SIO commands to transfer data (not yet described)>
.
return(SIO_BLOCK_SUCCESS);
}

// --
// Return SIO version number.
// --

#define SIO_FOO_MAJOR 1
#define SIO_FOO_MINOR 0

// <note the use of an SIO macro to encode a major and a minor version>

unsigned int foo::version()
{ return(SIO_VERSION_ENCODE(SIO_FOO_MAJOR, SIO_FOO_MINOR)); }

Of course this isn’t the only way to introduce SIO. If you don’t want to interfere
with existing classes, you could write a class SIO_foo which accesses foo data
through ‘get’ methods, or alternatively declare SIO_foo a friend in foo.

The SIO Manual Coding SIO Blocks

Version 1.0 11

2.1 The ‘version’ Method
The version method should be reasonably self explanatory. It returns an
unsigned int which describes the version level of the block. For convenience, I
provide the SIO_VERSION_ENCODE macro to encode a major and a minor value
(each in the range 0 - (216-1). Other macros (SIO_VERSION_MAJOR and
SIO_VERSION_MINOR) are provided to reverse the encoding process. It is not
mandatory for a block to follow a major/minor versioning scheme. It is mandatory
for a block to have a version method returning an unsigned int.

2.2 The ‘xfer’ Method
This is where the fun really begins! First of all, why xfer? Why not a read
method and a write method? Because if you’re careful, you can use the same
method!

The formal parameters to the xfer method are:

• SIO_stream* stream

An opaque pointer which you just pass on to the data transfer routines.

• SIO_operation op

An enumerated value. Either SIO_OP_READ (when the xfer method is being
asked to read from the stream) or SIO_OP_WRITE (when the xfer method is
being asked to write to the stream).

• unsigned int version

The version described in the previous section. When writing, it is the value
returned by a call to the version method. When reading it is the block version
number read from the data stream.

Inside xfer, the workhorse routine to transfer data to and from a stream is
SIO_data. SIO_data expects to be called with three parameters:

• SIO_stream* stream

Just pass the value passed in to xfer as the first parameter.

• <pointer to ?> pntr

A pointer to a location in memory where data transfer should start. I’m afraid
I lied when I said SIO_data (singular) was the data transfer workhorse. In
fact, there are many copies of SIO_data, each one taking a different primitive
data type. Thus there is a version of SIO_data which accepts a pointer to short

Coding SIO Blocks The SIO Manual

12 Version 1.0

and another that accepts a pointer to double. The complete set of recognized
primitives are:

 char

unsigned char

 short

unsigned short

 int

unsigned int

 long long

unsigned long long

float

double

Notable by its absence is long. Unfortunately long means different things on
different architectures (on DEC/OSF1/Alpha it’s a 64 bit integer). What does it
mean to write a long (64 bits) on DEC/OSF1/Alpha and then read it back as a
long (32 bits) on SunOS/sparc? I couldn’t figure it out so I simply didn’t provide
an interface.

The version of M$ Visual Studio I’m using (C++ 5.0) doesn’t understand the
ANSI specified declaration long long for a 64 bit integer (it insists on its own
invention called __int64). If you want to use a 64 bit integer, you should for now
declare it as SIO_64BITINT.

Stop Press. The same is true in M$ Visual Studio 6.0

• int count

The number of primitives to be transferred.

2.2.1 A Simple Write Routine

With these definitions let’s write a notional piece of code to write out a run
number, an event number and floating point three vector called position.

The SIO Manual Coding SIO Blocks

Version 1.0 13

static int run = 1;
static int event = 42;
static double position = { 1.0, 2.0, 3.0 };
unsigned int status;
 .
 .
 status = SIO_data(stream, &run, 1);
 status = SIO_data(stream, &event, 1);
 status = SIO_data(stream, &position[0], 3);
 .
 .

So far so good. But notice that SIO_data returns an unsigned int. This is an
error code (yes Virginia, errors do occur … what if you suddenly lost your AFS
token for instance). The error code follows the DEC/VMS principles of encoding
a variety of information in bit fields, but the only piece of encoding of interest to
the general user is that if the least significant bit is set, the operation was
successful. Revisiting our notional code and doing the proper error handling:

static int run = 1;
static int event = 42;
static double position = { 1.0, 2.0, 3.0 };
unsigned int status;
 .
 .
 status = SIO_data(stream, &run, 1);
 if(!(status & 1))
 return(status);

 status = SIO_data(stream, &event, 1);
 if(!(status & 1))
 return(status);

 status = SIO_data(stream, &position[0], 3);
 if(!(status & 1))
 return(status);

 .
 .

Well the error handling is correct, but the code is getting ugly! To help out, I
provide yet another macro (called SIO_DATA) which does all this work for you.
The code, complete with error handling, can be written thus:

Coding SIO Blocks The SIO Manual

14 Version 1.0

static int run = 1;
static int event = 42;
static double position = { 1.0, 2.0, 3.0 };
unsigned int status;
 .
 .
 SIO_DATA(stream, &run, 1);
 SIO_DATA(stream, &event, 1);
 SIO_DATA(stream, &position[0], 3);
 .
 .

The code is certainly neater, but there is a hidden gotcha. If you want to use the
SIO_DATA macro, you must declare an unsigned int called status.

2.2.2 The Corresponding Read Routine

Here it is:

static int run = 1;
static int event = 42;
static double position = { 1.0, 2.0, 3.0 };
unsigned int status;
 .
 .
 SIO_DATA(stream, &run, 1);
 SIO_DATA(stream, &event, 1);
 SIO_DATA(stream, &position[0], 3);
 .
 .

Look familiar? No I didn’t make a mistake with cut and paste! In this example the
code to read back the data is identical to the code needed to write it. It’s true that
all those initialization values will get overwritten during the read, and I should
probably have omitted them, but I wanted to reinforce the point that reading and
writing can be accomplished by a very similar, if not the identical piece of code.

2.3 The Real World
Real world SIO blocks will obviously be much more complicated than the simple
example just outlined. There will be times when it is impossible to write exactly
identical code for the read and the write. Some of these can be overcome by minor
code branching based on the value of op (the second parameter to xfer). In
extreme examples, it may be necessary to write your own private and separated
read and write routines to which xfer branches.

The SIO Manual Coding SIO Blocks

Version 1.0 15

Another real world effect is data format evolution. Much can be achieved using
the version number. Real xfer routines may well end up looking like:

unsigned int MyClass::xfer
(
 SIO_stream* stream,
 SIO_operation op,
 unsigned int version
)
{
.
.
.
 major = SIO_DECODE(version);
 minor = SIO_DECODE(version);

 switch(major)
 {
 case 1:
 SIO_DATA(stream, &run, 1); // Original major=1 format
 SIO_DATA(stream, &event, 1); // Original major=1 format
 SIO_DATA(stream, &position[0], 3); // Original major=1 format
 new_data = <guard_value>; // Fake data when major=2
 break;

 case 2:
 SIO_DATA(stream, &run, 1); // Common to major=1, major=2
 SIO_DATA(stream, &event, 1); // Common to major=1, major=2
 SIO_DATA(stream, &position[0], 3); // Common to major=1, major=2
 SIO_DATA(stream, &new_data, 1); // New data in major=2 format
 break;
 }
.
.
.
return(SIO_BLOCK_SUCCESS);
}

When this routine is used to write data, it is still called with a version number.
The version number is whatever the version member of the class currently
responds with, which is presumably the latest evolution (major=2 in this case).
When this routine is used to read current data (major=2) then all is well. When it
is used to read old data (major=1) the data can still be read, but the value of
new_data has to be faked (hopefully with a unique and identifiable guard value).

Coding SIO Blocks The SIO Manual

16 Version 1.0

The SIO Manual Pointers

Version 1.0 17

3 Pointers

One of the more frustrating aspects of constructing datasets for C or C++ is the
problem of what to do about pointers. Memory references which made sense in
the context of a program are totally meaningless when written to a file.

More sophisticated tools like Root, Objectivity and Java provide methods for
dealing with this problem. Those methods can be quite complex, involving
pointer chasing (the idea that if you write a pointer, you also want to write the
object at the far end of the pointer) and duplicate elimination (more than one
pointer might point to the same object, which should not be written out twice for
efficiency reasons). This style also requires genuinely self describing objects
(because the program must be able to work out how to write the object at the far
end of a pointer).

SIO does not try to compete at this level, which is not to say that SIO doesn’t
provide some help! Lacking any form of data description, SIO cannot pointer
chase. This puts the responsibility back in the programmer’s court. If object A
contains a pointer to object B, then it is up to the programmer(s) to ensure that
objects A and B are each written out. With that proviso, SIO can do the rest.

3.1 Pointer To and Pointed At
As SIO constructs a record to be written out, it takes special note of data which
the user declares to be either a ‘pointer to object’ or a ‘pointed at object’ (the next
section will give details of how the user can do that). These are stored in
lookaside tables and just before physically writing the data out, SIO goes back
over the record and enters ‘match values’ such that every ‘pointed at object’ gets a
unique identifier and all ‘pointer(s) to (that) object’ get the same identifier.

When this record is read back, SIO once again constructs lookaside tables which
take note of where the ‘pointers to objects’ and ‘pointed at objects’ end up in

Pointers The SIO Manual

18 Version 1.0

memory. When record reading is complete, it does a relocation pass to fix up all
the pointers.

3.2 Pointer Example
So much for theory. How is this accomplished in a real program? The following is
the code I used to test this feature. It is that ubiquitous data structure, the singly
linked list. The first listing is the header file and the second listing is the
implementation file.

// --
// => Test SIO on a linked list.
// --
//
// General Description:
//
// SIO_list_test tests the SIO formatting of a linked list.
//
// --

#ifndef SIO_LIST_TEST_H
#define SIO_LIST_TEST_H 1

#include "SIO_block.h"

class SIO_stream;

typedef struct s_LinkList {
 struct s_LinkList* next;
 float value;
} LinkList;

class SIO_list_test : public SIO_block
{
public:
 SIO_list_test(const char*);

 unsigned int xfer(SIO_stream*, SIO_operation, unsigned int);
 void validate();
 unsigned int version();

private:
 LinkList* link_list;
 LinkList* link_read;

};
#endif

The SIO Manual Pointers

Version 1.0 19

// --
// => Test SIO on a linked list.
// --
//
// General Description:
//
// SIO_list_test tests the SIO formatting of a linked list.
//
// --

#ifdef _MSC_VER
pragma warning(disable:4786) // >255 characters in debug information
#endif

#include <stdio.h>

#include "SIO_list_test.h"
#include "SIO_definitions.h"
#include "SIO_functions.h"

// --
// Constructor.
// --
SIO_list_test::SIO_list_test(const char* i_name) : SIO_block(i_name)
{

//
// Local variables.
//
LinkList
 *curr,
 **prev;

int
 i;

//
// Initialize the read in pointer.
//
link_read = NULL;

//
// Build a dumb linked list.
//
prev = &link_list;
for(i = 0; i < 4; i++)
{
 curr = static_cast<LinkList *>(malloc(sizeof(LinkList)));
 curr->next = NULL;
 curr->value = 0.1 * (i + 1);
 *prev = curr;
 prev = &(curr->next);
}

Pointers The SIO Manual

20 Version 1.0

//
// That’s all folks!
//
}

// --
// Transfer.
// --
unsigned int SIO_list_test::xfer
(
 SIO_stream* stream,
 SIO_operation op,
 unsigned int version
)
{
LinkList
 *curr;

unsigned int
 status;

//
// Do the transfer.
//
if(op == SIO_OP_READ)
{
 SIO_PTAG(stream, &link_read);
 SIO_PNTR(stream, &link_read);
 curr = link_read;
}
else
{
 SIO_PTAG(stream, &link_list);
 SIO_PNTR(stream, &link_list);
 curr = link_list;
}

while(curr != NULL)
{
 if(op == SIO_OP_READ)
 curr = static_cast<LinkList *>(malloc(sizeof(LinkList)));

 SIO_PTAG(stream, &curr->next);
 SIO_PNTR(stream, &curr->next);
 SIO_DATA(stream, &curr->value, 1);

 if(op == SIO_OP_READ)
 {
 if(curr->next == NULL)
 curr = NULL;
 }
 else
 curr = curr->next;

The SIO Manual Pointers

Version 1.0 21

}

//
// That’s all folks!
//
return(SIO_BLOCK_SUCCESS);
}

// --
// Validate.
// --
void SIO_list_test::validate()
{
//
// Local variables.
//
LinkList
 *curr;

//
// Validate the data content.
//
printf("\n---------- In memory -----------\n");
for(curr = link_list; curr != NULL; curr = curr->next)
{
 printf("0x%016lx: 0x%016lx 0x%016lx %8.6f\n",
 curr, curr->next, curr->head, curr->value);
}

printf("\n---------- Read back -----------\n");
for(curr = link_read; curr != NULL; curr = curr->next)
{
 printf("0x%016lx: 0x%016lx 0x%016lx %8.6f\n",
 curr, curr->next, curr->head, curr->value);

}

//
// That’s all folks!
//
return;
}

// --
// Return version number (encoded).
// --
#define SIO_LIST_TEST_MAJOR 1
#define SIO_LIST_TEST_MINOR 0

unsigned int SIO_list_test::version()
{ return(SIO_VERSION_ENCODE(SIO_LIST_TEST_MAJOR, SIO_LIST_TEST_MINOR)); }

Pointers The SIO Manual

22 Version 1.0

That’s quite a mouthful, so I’ll try to explain what’s going on:

• The constructor always constructs a simple four member linked list. The ‘root’
pointer is the variable link_list. This is the data that gets written out.

• The constructor also initializes the link_read variable to NULL. In order to do
the test, I wanted to have both the data written out and the data read back in
memory simultaneously so that I could compare them. This is going to
complicate…

• The xfer routine does both the reading and the writing. Because the read and
written versions of the data occupy different places in memory, I had to use
the op variable to branch portions of the reading and writing (though in truth,
even if the data was read back into the same location, it is the nature of this
example that I would still need to use op).

• The verify routine simply prints the structures out to see if SIO worked.

• When I wanted to mark something as being ‘pointed at’, I used the SIO_PTAG
macro which takes a two arguments:

• The usual opaque pointer (stream)

• The address in memory I wish SIO to remember (in this case the variable
next is the first element of the structure LinkList, so &curr->next is just
the address of that structure in the linked list).

• When I wanted to mark something as being a ‘pointer to’, I used the
SIO_PNTR macro, which also takes two arguments:

• The usual opaque pointer (stream)

• The address in memory which contains the pointer I wish SIO to
remember (in this case curr->next is the pointer, so the address that
contains this pointer is &curr->next).

At which point I must apologize for coming up with an example where the
arguments to SIO_PTAG and SIO_PNTR are identical. This only happens when the
something being pointed to is itself a pointer to something else!

3.2.1 Pointer Length

If you look at the dump routine, you will find the formatting instruction 0x%016lx
being used to dump pointers. Why? Because the length of a pointer is not
guaranteed by either C or C++. In fact pointers are four bytes long on IBM/AIX,
Linux, Sun/SunOS and Windows/NT. They are eight bytes on DEC/OSF1!

The SIO Manual Pointers

Version 1.0 23

3.2.2 NULL pointer handling

There is one other feature of this example which is very important. If you look at
the code executed during a read, you will notice that the value of curr->next (a
pointer) is used immediately after it is read. How can this be legal when SIO has
not yet done its pointer relocation?

The answer is that NULL pointers are special. If SIO_PNTR is asked to write out a
NULL pointer, SIO guarantees that a NULL pointer will be returned immediately
when the data is read back. Conversely, SIO_PNTR always returns a non NULL
value for a pointer which was non NULL when it was written out (though the non
NULL value SIO_PNTR returns is otherwise useless until after SIO has done its
relocation pass).

3.3 Good Points About SIO Pointer Handling
• First of all that it exists! At least you get some help with pointers!

• SIO defines a consistent representation of pointers in the dataset, thus
relieving the user from concerns about the exact length of pointers.

• The relocation pass doesn’t occur until all the blocks of a record have been
read or written so pointers can point to any location within the record. They
are not constrained to point to objects which have already been written out.

• It’s generally well behaved. If you SIO_PTAG something that nothing else
points to, no harm is done. More importantly, if you SIO_PNTR to something
that doesn’t make it into the written record, that pointer will be set to NULL by
the relocation. (This case is distinct from the point discussed earlier which
only dealt with the case of what happens to a pointer that was NULL when it
was written out).

3.3 Ambiguous Points About SIO Pointer Handling
• Pointer relocation is handled across a whole record. This is good in that

pointers are not constrained to point within their own block. This can be bad if
pointers in one author’s block point to objects in another author’s block.
These two authors will need to get together to ensure that both their blocks
appear in the written record.

3.3 Bad Points About SIO Pointer Handling
• SIO’s method of relocation ‘steals’ memory locations during the read process,

so the user code for an SIO block must always read the data into ‘final’
locations. Do not read data into temporary variables allocated from the stack!

Pointers The SIO Manual

24 Version 1.0

SIO will cheerfully overwrite those locations, mess up the stack and leave you
with a debugging problem you do not want to deal with!

The SIO Manual Class Descriptions

Version 1.0 25

4 Class Descriptions

4.1 Common Features
Before launching into a formal description of the SIO classes, I would like to
describe some common features which run through all the classes. Setting these
out first should make the SIO interface routines more comprehensible.

4.1.1 SIO Names

Names are used throughout SIO to identify streams, records and objects. A name
must obey certain rules to be legal. Basically anything which would be legal as a
C/C++ variable is a legal name. Formally that amounts to:

• Names must constructed from the characters in the upper- and lower-case
alphabets, digits and the underscore.

• Names cannot begin with a digit.

• Names are case sensitive.

4.1.2 SIO Condition Codes

SIO frequently reports errors using a condition code (an unsigned int). These
codes follow the old VMS standard of encoding data into bit fields. The only part
of real interest to a user is that if the least significant bit of an error code is set, the
operation was successful. All condition codes are defined in the file
SIO_definitions.h.

Class Descriptions The SIO Manual

26 Version 1.0

4.1.2 SIO Enumerations

Many parameters to and returns from SIO routines are defined as members of
enumerated sets. For example, when a stream is opened to a file, the second
argument is defined to be a member of the enumerated set SIO_stream_mode.
Possible values of SIO_stream_mode are SIO_MODE_READ, SIO_MODE_WRITE_NEW,
SIO_MODE_WRITE_APPEND. All enumerated sets are defined in
SIO_definitions.h.

4.1.3 SIO Error Reporting

SIO has a flexible method of controlling the reporting of errors to <stdout>. It
defines three levels of reporting using the enumerated set SIO_verbosity. The
levels are:

• SIO_SILENT Never report anything.

• SIO_ERRORS Report errors.

• SIO_ALL Report errors and progress.

The reporting level is not a single global variable. Verbosity can be defined down
to the level of each individual stream, record or block. The technique is the same
for all three, so I’ll only describe it for streams.

When a stream is created, it receives its reporting level from the default level
established in the stream manager. A stream’s reporting level can then be tailored
using that stream’s getVerbosity and setVerbosity methods. The manager’s
default level can also be tailored using the manager’s getVerbosity and
setVerbosity methods. This will alter the reporting level of all streams created
after the change in the manager’s default. If the user chooses not to tailor the
manager’s reporting level, the program default is SIO_ERRORS.

The format of reported errors is also designed to be consistent. If the block
manager wishes to report an error it will be in the form:

SIO: [Block Manager] <Text of error>

If a block wishes to report an error, in will be in the form:

SIO: [<stream>/<record>/<block>] <Text of error>

4.2 SIO Managers
The SIO managers are very similar. In essence they simply maintain lists of
named objects of their own ‘species’. They are never instantiated and all their
methods and data are declared static. You can think of them as singleton objects.

The SIO Manual Class Descriptions

Version 1.0 27

 4.2.1 SIO_streamManager Methods

add(const char* name)

name Input Name of stream.
 Returns SIO_stream*

Create a new stream. At time of creation, it is not necessary to specify
how the stream will be used. In case of error (illegal name for instance), it
returns a NULL pointer.

add(const char* name, unsigned int size)

name Input Name of stream.
size Input Suggested stream buffer size (in bytes)

Returns SIO_stream*

Variant on the previous add. You can help SIO by suggesting the right sort
of buffer size to allocate for transferring these records. If you can’t it
doesn’t matter, SIO will look after its own buffering.

get(const char* name)

name Input Name of stream.
Returns SIO_stream*

Return a pointer to the named stream. If the stream does not exist, the
NULL pointer is returned.

getVerbosity()

Returns SIO_verbosity

Return the manager’s default verbosity setting.

remove(const char* name)

name Input Name of stream.
Returns unsigned int (condition code)

Remove a stream. If the stream is open, it will be closed first.

setVerbosity(SIO_verbosity verbosity)

verbosity Input New default verbosity
Returns SIO_verbosity

Set the manager’s default verbosity. The value returned is the verbosity
before the change.

Class Descriptions The SIO Manual

28 Version 1.0

4.2.2 SIO_recordManager Methods

add(const char* name)

name Input Name of record.
 Returns SIO_record*

Create a new record. If the record cannot be created, the NULL pointer is
returned.

get(const char* name)

name Input Name of record.
Returns SIO_record*

Return a pointer to the named record. If the record does not exist, the NULL
pointer is returned.

getVerbosity()

Returns SIO_verbosity

Return the manager’s default verbosity.

remove(const char* name)

name Input Name of record.
Returns unsigned int (a condition code)

Remove a record.

setVerbosity(SIO_verbosity verbosity)

verbosity Input New default verbosity
Returns SIO_verbosity

Set the manager’s default verbosity. The value returned is the verbosity
before the change.

4.2.3 SIO_blockManager Methods

add(SIO_block* block)

block Input Pointer to block object.
 Returns SIO_block*

Add a pre-existing block to the list. This is not the same as add for streams
and records. Streams and records are strictly SIO objects and SIO knows
how to create and delete them. Blocks are instantiated outside SIO by the
user and the pointer to the block is passed into this routine. If there is any
problem with the addition, the NULL pointer is returned, otherwise it
simply reflects its input parameter.

The SIO Manual Class Descriptions

Version 1.0 29

get(const char* name)

name Input Name of block.
Returns SIO_block*

Return a pointer to the named block. If the record does not exist, the NULL
pointer is returned.

getVerbosity()

Returns SIO_verbosity

Return the manager’s default verbosity.

remove(const char* name)

name Input Name of block.
Returns unsigned int (a condition code)

Remove a block.

setVerbosity(SIO_verbosity verbosity)

verbosity Input New default verbosity
Returns SIO_verbosity

Set the manager’s default verbosity. The value returned is the verbosity
before the change.

4.3 SIO_stream Methods
close()

Returns unsigned int (condition code)

Close the stream.

dump(unsigned int offset, unsigned int length)

offset Input Dump offset in the stream buffer
length Input Length of buffer to dump

Returns void

Produces a hex dump on <stdout> of the stream’s buffer starting at byte
offset offset and running for length bytes. This is essentially a
debugging tool and is not for the squeamish.

getName()

Returns std::string*

Return this stream’s name.

Class Descriptions The SIO Manual

30 Version 1.0

getFilename()

Returns std::string*

Return the name of the file associated with this stream. Blank if no file is
associated with this stream.

getMode()

Returns SIO_stream_mode

Returns the stream mode. Mode will be a member of the enumerated set
SIO_stream_mode. Modes include read (stream is set up to read from a
file), write new (stream is set up to write to a file and will overwrite a pre-
existing file of the same name), write append (stream is set up to write to a
file and will append to a pre-exiting file of the same name) and undefined
(the stream exists but has not yet been associated with a file).

getState()

Returns SIO_stream_state

Returns the stream state. State will be a member of the enumerated set
SIO_stream_state. States include open (stream is attached to an open
file), closed (stream is not attached to an open file) and error (something
has gone wrong with this stream).

getVerbosity()

Returns SIO_verbosity

Return the verbosity level for this stream.

open(const char* file, SIO_stream_mode mode)

file Input Name of file to open.
mode Input Mode in which to open file.

Returns unsigned int (condition code)

Open a file on this stream. mode determines the mode (read, write new or
write append).

read(SIO_record** record)

record Output Pointer to record type opened.
Returns unsigned int (condition code)

Read a record on the stream. The argument is provided because a stream
can have many types of records on it. This allows the user to inspect the
record type just read (by calling e.g. record->getName). Errors and the
end-of-file condition are reported through the condition code.

The SIO Manual Class Descriptions

Version 1.0 31

setVerbosity(SIO_verbosity verbosity)

verbosity Input New verbosity
Returns SIO_verbosity

Set the verbosity for this stream. Returns the prior verbosity.

write(const char* record)

record Input Name of record to be written.
Returns unsigned int (condition code)

Write a record to the stream.

4.4 SIO_record Methods
connect(const char* block)

block Input Name of block to attach to record
Returns unsigned int (condition code)

Connect a block to a record. This is only needed when writing records.
When a record is written, it will scan through and write each block
connected to it. A block can be simultaneously connected to several
records.

connect(SIO_block* block)

block Input Pointer to block to attach to record
Returns unsigned int (condition code)

Simply a variant interface. See previous entry.

disconnect(const char* block)

block Input Name of block to detach from record
Returns unsigned int (condition code)

Disconnect a block from a record. Blocks can be connected and
disconnected at any time during the program (but beware, do you really
want a record to have different content on the same data stream?)

disconnect(SIO_block* block)

block Input Pointer to block to detach from record
Returns unsigned int (condition code)

Simply a variant interface. See previous entry.

getCompress()

Class Descriptions The SIO Manual

32 Version 1.0

Returns bool

Get the current compression state for this record.

getConnect(const char* block)

block Input Name of block to query
Returns SIO_block*

Ask if the named block is connected to this record. Returns the block
pointer if it is, a NULL pointer if it isn’t.

getName()

Returns std::string*

Get the name of this record.

getUnpack()

Returns bool

Ask if record unpacking has been requested for this record. If record
unpacking has not been requested then records of this name will be
ignored when they are read.

getVerbosity()

Returns SIO_verbosity

Return the verbosity level for this record.

setCompress(bool)

Returns bool

Set the compression state for this record. Returns prior compression state.

setUnpack(bool)

Returns bool

Set the unpacking state for this record. Returns prior unpacking state.

setVerbosity(SIO_verbosity verbosity)

verbosity Input New verbosity
Returns SIO_verbosity

Set the verbosity for this record. Returns the prior verbosity.

The SIO Manual Class Descriptions

Version 1.0 33

4.5 SIO_block Methods
getName()

Returns std::string*

Get the name of the block.

xfer(SIO_stream* st, SIO_operation op, unsigned int version)

st Input Opaque stream pointer.
op Input Transfer operation (read or write).
version Input Block version number.

Returns unsigned int (condition code)

A pure virtual function. Discussed in the section ‘Coding SIO Blocks’.

version()

Returns unsigned int (version number)

A pure virtual function. Discussed in the section ‘Coding SIO Blocks’.

4.6 A Fake Example
Putting all this information together, what might a real program look like? The
following example is trivial and is only pseudo-code, but it should give you some
idea. The ‘program’ is reading an SIO dataset containing records named
raw_data which in turn contain the blocks Foo and Bar. The program wants to
munge on these blocks to produce a new block called Baz, at which point it wants
to write out all three blocks in a single record called baz_data to a new SIO
output file. I’ve embedded the rest of the documentation in the program
comments:

//
// The required SIO includes.
//
#include "SIO_streamManager.h"
#include "SIO_recordManager.h"
#include "SIO_blockManager.h"
#include "SIO_stream.h"
#include "SIO_record.h"
#include "SIO_definitions.h"

//
// The includes defining Foo, Bar and Baz
//
#include "Foo.h"
#include "Bar.h"
#include "Baz.h"

Class Descriptions The SIO Manual

34 Version 1.0

//
// I’ll need an input and an output file name.
//
static char
 i_file[] = “input_file_name.sio”,
 o_file[] = “output_file_name.sio”;

//
// Main routine.
//
int main()
{

SIO_record
 *dummy;

unsigned int
 status;

//
// Set up the SIO verbosity.
//
SIO_streamManager::setVerbosity(SIO_ALL);
SIO_recordManager::setVerbosity(SIO_ALL);
SIO_blockManager::setVerbosity(SIO_ALL);

//
// Create the SIO streams and open them. The memory allocations are just
// guesses. SIO will adjust them as necessary, but it’s useful to give
// a guideline. The output stream is set up to overwrite a pre-existing
// file.
//
i_stream = SIO_streamManager::add("input", 64 * SIO_KBYTE);
i_stream->open(i_file, SIO_MODE_READ);

o_stream = SIO_streamManager::add("output", 64 * SIO_KBYTE);
o_stream->open(o_file, SIO_MODE_WRITE_NEW);

//
// Instantiate foo, bar and baz giving their SIO block name as the last
// argument (foo, bar and baz are presumed to have inherited from SIO_block).
//
Foo *foo = new Foo(..., "Foo");
Bar *bar = new Bar(..., "Bar");
Baz *baz = new Baz(..., "Baz");

//
// Create an SIO record for the input and request that these records be
// unpacked. Note that it is not necessary to attach blocks to the
// input records. SIO will use any block unpackers it has available.
// Nor is it necessary to tell SIO if the data is compressed or not, SIO
// can work that out from the data stream itself.
//

The SIO Manual Class Descriptions

Version 1.0 35

i_record = SIO_recordManager::add("raw_event");
i_record->setUnpack(true);

//
// Create an SIO record for the output and request that all output records
// of this type be written in compressed format. In this case, the blocks
// must be explicitly attached to get them written out.
//
o_record = SIO_recordManager::add(“baz_event”);
o_record->setCompress(true);
o_record->connect(foo);
o_record->connect(bar);
o_record->connect(baz);

//
// Loop over input records, manipulate them and write out new versions.
// Note that the input file could contain other records other than raw_data,
// but because raw_data is the only record type for which unpacking has been
// requested, all other records will be ignored.
//
for(;;)
{
 status = i_stream->read(&dummy);
 if(!(status & 1))
 leave;

 baz->do_something(foo, bar);

 status = o_stream->write(“baz_event”);
 if(!(status & 1))
 leave;
}

//
// That’s all folks!
//
return 0;
}

Class Descriptions The SIO Manual

36 Version 1.0

The SIO Manual Questions And Answers

Version 1.0 37

5 Questions And Answers

There always seems to be a bunch of extraneous information left over at the end
of a document like this (the alternative … that I don’t know how to structure good
documentation … is of course completely unthinkable!).

I thought I’d try a new technique and present this information as a series of
questions and answers.

Q Can I mix different records on the same stream?

A. Yes.

Q Can I mix compressed and uncompressed records on the same stream?

A. Yes.

Q Something went wrong while I was reading back my SIO block. How
should I report this to SIO?

A. Instead of returning SIO_BLOCK_SUCCESS, return SIO_BLOCK_NOTFOUND.
SIO will abort reading the current record and the condition code returned
by SIO_record::read will reflect the failure. Reading will pick up again
on the next read from the same stream.

Q Something went wrong while I was writing out my SIO block. How
should I report this to SIO?

A. Instead of returning SIO_BLOCK_SUCCESS, return SIO_BLOCK_NOTFOUND.
SIO will not write the current record and the condition code returned by

Questions And Answers The SIO Manual

38 Version 1.0

SIO_record::write will reflect the failure. Writing will pick up again on
the next write to the same stream.

Q A call to SIO_stream::getState shows the stream to be in state
SIO_STATE_ERROR. What can I do with the stream now?

A. Unfortunately not much. The only thing you can do with an errored stream
is close it. If it closes successfully, you can reuse it. If anyone is interested
in playing with SIO, this is an area that could certainly be improved.

Q How can I attach more than one block of the same name to a record?

A. You can’t. Blocks are not objects. Think of a block as a data container or
manager. It is free to write out multiple objects of the same or different
types (and such objects could given an transfer method to be called by the
block), or it can form its own data structures by summarizing the data in
other objects. This is actually the start of an interesting theoretical
discussion. There are ways SIO could be modified to make it a genuine
C++ object reader/writer but these techniques quickly increase the
complexity and were outside of the scope of the ‘simple’ binary format I
was after.

