A Framework for TPC Simulation

Santa Cruz Linear Collider Retreat June 27-29, 2002

Dean Karlen Carleton University / University of Victoria

Motivation for this work

 Explore the parameter space for TPC design:
 – dimensions, gas, B field, gas amplification technology, pad designs

*****Simulation must be anchored on reality:

- compare with several prototype TPCs
- understand signals
- test out tracking ideas

*Not intended for use inside a LC detector simulation package for physics studies

Requirements/Design

*****Requirements

- Easy to use (graphical interface)
- Flexible enough to allow any TPC design
- Easy to maintain / add additional features
- Portable
- *Design choices
 - Object oriented (Java)
 - Use JAS tools:
 - JAS Histogrammer
 - JAIDA

Building a TPC

*****The TPC is built from a set of TPC parts

- gas volumes
- GEM foil amplification stages
- readout pad structures
- TPC parts have methods to transport electron clouds through them
- *The parameters for each TPC part are accessible through a single design window

Designing readout pads

Adding an ionization track

28 June 2002

Signals on pads

28 June 2002

Signals on pads

Data can be written to disk for "offline" analysis...

Comparison with prototype TPC data

10

Comparison with prototype TPC data

28 June 2002

Track fitting

Fitter Contr	ol for Readout	Mesh	_ 🗆 ×
XY Fitter			
Set up XY fitte	er # of rows	8	
Parameter	Value	fixed	
x0 (mm)	0.02734		
phi (rad)	-0.31483		
sigma (mm)	0.39565		
gain	3.0E3		
noise prob	0.0E0	V	
Calculate Like	lihood -Log(Li	kelihood) [14	6.40452
		itus. jacces.	2
Parameter	Estimated Erro	or correlation	IS
x0 (mm)	0.04752	0.22166	0.02369
phi (rad)	8.68606E-3	0.09799	
sigma (mm)	0.0403		

uses the <u>Nonlinear Optimization Java Package</u> (uncmin) translated to java by Steve Verrill

28 June 2002

From TESLA TDR: advocates chevrons

28 June 2002

Current favourite gas mix: Ar CF_4

- fast at low fields
 - low transverse diffusion in magnetic fields
- larger diffusion at higher fields

– Example: Ar CF_4 (98:2)

*****Single tracks with $-0.1 < \phi, \psi < 0.1$ *****Seven pad geometries sample same ionization

*****Single tracks with $-0.1 < \phi, \psi < 0.1$ *****Seven pad geometries sample same ionization

Comparison of pads for Micromegas

Ar CF4 (98:2): 5 rows of 2.5 mm x 5 mm pads

28 June 2002

Future possible development

- Include cluster size distributions calculated by HEED
- Add noise: electronic & random SR conversions
 Include "offline analysis"
- * Question: If other groups interested in the program, how best to allow for group development?
- * To download program, go to: http://www.physics.carleton.ca/~karlen/gem/simulation