Vertex Detector Mechanics

Bill Cooper
Fermilab
Introduction

• The overall approach to mechanical support and cooling has been developed in conjunction with SiD.

• The support structures which have been studied rely heavily on the use of carbon fiber laminate (CF).
 – CF offers a high stiffness * radiation length product.
 – Operation near room temperature (> -10° C) has been assumed during design development.
 • Minimizes thermal distortion effects
 – Operation at lower temperature may be possible, but would require a more carefully engineered design.

• To control the number of radiation lengths, cooling with forced flow of dry gas has been assumed.
Representative Material Properties

- In general, we are interested in maximizing stiffness and minimizing the number of radiation lengths of a support structure.
- For beam-like deflection of a flat plate of fixed thickness, width, and length, deflection with gravity acting normal to the surface varies linearly with density and inversely with elastic modulus.
- We are also interested in controlling thermal distortions by minimizing differences in CTE.
- The table below suggests the choice of CF with portions removed.
- Behavior of a combined structure is more complicated.

<table>
<thead>
<tr>
<th>Material</th>
<th>Silicon</th>
<th>Beryllium</th>
<th>CF</th>
<th>¼ CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>2.33</td>
<td>1.848</td>
<td>1.56</td>
<td>0.39</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>131</td>
<td>290</td>
<td>228</td>
<td>57</td>
</tr>
<tr>
<td>Radiation length average (cm)</td>
<td>9.37</td>
<td>35.43</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>Relative deflection</td>
<td>1</td>
<td>0.36</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Relative number of radiation lengths (average)</td>
<td>1</td>
<td>0.26</td>
<td>0.39</td>
<td>0.10</td>
</tr>
<tr>
<td>CTE (ppm/°C)</td>
<td>2.6</td>
<td>11.6</td>
<td>-0.6</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

CF modulus and CTE depend on the lay-up
MPI Ladder

• We were asked if we would look at deflections and make a thermal analysis of an MPI ladder. Thermal analysis remains to be done.
MPI Ladder

- Ladder was modeled as a window frame 3 mm wide on three edges and 1 mm wide on one long edge plus a thinner portion within frame.
 - Frame thickness = 0.3 mm
 - Thickness within frame = 0.05 mm
 - Overall length = 125 mm

FEA by C. H. Daly

Deflection = 82 µm

All silicon

Hand calculation gave 77 µm

E_{silicon} was taken to be 110 GPa
MPI Ladder

- 0.25 mm of frame thickness was replaced by CF, leaving 0.05 mm silicon thickness over the full extent of the ladder.

FEA by C. H. Daly

Silicon + CF

Hand calculation gave 46 µm

E_{CF} was taken to be 228 GPa

Deflection = 43 µm
SiD VXD Barrel End View

- 2 types of sensors
- A and B sub-layer geometry
- 6-fold symmetry
- To reduce mass, barrel layers are glued to form a unit.
- Up to 15 sensors per unit

Sensors:
IR_A = 14, 22, 35, 47.6, 60 mm
IR_D = 15.15, 23.13, 35.89, 48.41, 60.77 mm
Active widths: 9.1, 13.3 mm
Cut widths: 9.6, 13.8 mm
Beam pipe IR: 12 mm
Beam pipe OR: 12.4 mm
March 3, 2006

Oblong boxes are openings in end rings and end membranes for cables, optical fibers, and air flow.

Splitting into two halves allows assembly about the beam pipe.

Possible clam-shell split line
SiD Sensor Assumptions

• VXD pixel size = 20 µm x 20 µm x 20 µm (or less) in the central pixel region
 – Provides good resolution and pattern recognition with five layers
 – Forward disks may have a coarser granularity

• Sensors are cooled by forced flow of dry gas.
 – Limits the number of radiation lengths

• To minimize Phi gaps between sensors, we assumed the following.
 – Sensor boundaries about active area are 0.25 mm wide.
 – Sensor thickness, including readout, is 0.15 mm.
 – The gap from the physical edge of one sensor to the surface of the next is 0.5 mm.
 • Of the 0.5 mm, we think 0.25 mm is needed. Portions of sensors could extend into the other 0.25 mm.

• To eliminate the need for barrel sensor-sensor longitudinal overlap, we assumed 125 mm long sensors (6” technology).

• We assumed that sensors are flat as fabricated and do not need to be flattened by support structures.
SiD Sensor Assumptions

• To allow low-mass support with dry air cooling, we assumed a sensor operating temperature > -10° C.
 – Reduces thermal expansion issues with carbon fiber support structures
 – Reduces thermal insulation requirements
• For an initial cooling study, we assumed that average power dissipation of central pixel sensors = 131 µW/mm² and that power is uniformly distributed over a sensor.
 – Given present technologies, that implies power is ramped.
 – It allows reasonable sensor temperatures with laminar air flow.
 • Laminar flow minimizes the likelihood of flow-induced vibration.
 – In the forward disks, where pixels may be a factor of 4 larger in area, we assumed 33 µW/mm².
• We would expect to modify sensor assumptions to match sensor developments.
Barrel Layers

- Sensors are supported from and glued to a carbon fiber (CF) shell.
- Each barrel layer includes a CF end ring, which controls out-of-round distortions.
- Openings provide cable, optical fiber, and dry gas passages.
- Other openings to reduce mass and adjust gas flow would be added.
- End membranes connect one layer to the next to form a half-barrel.
- To control material, the use of fasteners has been limited.
 - Three fasteners per end ring
Finite Element Analysis (FEA)

- An initial model was developed by Colin Daly (University of Washington) to represent the barrel 1 carbon fiber (CF) support structure, sensors, and epoxy which holds sensors in place.
- All sensors are on the outer surface of the carbon fiber (CF).
- A & B layers have been placed leaving 0.54 mm from the edge of an A-layer sensor to the surface of a B-layer sensor.
- All barrel 1 sensors are shown 9.6 mm wide (9.1 mm active).
- B-layer sensors overhang CF ~3.3 mm.
SiD Half Barrel (Innermost Barrel)

- 3 layers of K13C pre-preg (had been 4 layers)
- Composite thickness = 0.195 mm
- 0/90/0 degree lay-up
- CF strut width = 2 mm
- Sensor width for this barrel = 9.6 mm (could change)
- 0.1 mm silicon
- 0.05 mm epoxy
- End rings included
SiD Half Barrel (Innermost Barrel)

- Deflection with gravity acting vertically = 1.6 \(\mu\)m
- Demonstrates the benefits of a support structure with larger transverse dimensions
- Innermost barrel tests beam-like deflections
- Next to outermost barrel will test out-of-round deflections (not done yet)
SiD Half Barrel (Innermost Barrel)

- Deflection with gravity acting horizontally = 0.5 µm
- Suggests a split at equator works better
 - A surprise to some of us
- The good results suggest that uncontrolled loading from cables and fibers at the ends may not be so much of a problem.
SiD VXD Elevation View

- 5-layer pixel barrel: $Z = \pm 62.5 \text{ mm}; 14 \text{ mm} < R < 61 \text{ mm}$
- 4 pixel disks per end: $Z = \pm 72, \pm 92, \pm 123, \pm 172 \text{ mm}; R < 71 \text{ mm}$
- 3 forward disks per end: $Z = \pm 208, \pm 542, \pm 833 \text{ mm}; R < 166 \text{ mm}$
 - Could be pixels or pairs of micro-strips
- Coverage extends to $\cos(\theta) = \pm 0.99$.
SiD VXD Elevation View

- Outer split cylinders couple to the beam tube at \(Z = \pm 214 \) and \(\pm 882 \) mm, are supported by the beam tube, and stiffen it.
- High modulus CF has been assumed for most support structures.
 - Typical thickness, 0.26 mm, assumes 4 layers of pre-preg.
 - In many places, average thickness can be substantially reduced by cutting holes.
- CF membranes support the barrel and disks.
Beam Pipe Deflections

• For these calculations, an all-beryllium beam pipe was assumed.
 – Wall thickness of 0.25 mm was assumed in the central, straight portion.
• The radius of conical portions was assumed to increase with \(dR/dZ = 17/351 \).
 – Wall thickness in the conical portions was chosen to correspond to collapse at slightly over 2 Bar external pressure.
• An inner detector mass of 500 g was assumed to be simply supported from the beam pipe at \(Z = \pm 900 \text{ mm} \).

Inner detector weight contributes ~ 0.008 mm.

Maximum stress ~ 20 MPa
Beam Pipe Deflections

- A basic assumption has been that the beam pipe would be guided, not just simply supported, at its ends.
- If one insists that the beam pipe be simply supported, then the outer support cylinder for the vertex detector could be extended to ±1.85 m.
- Connect to beam pipe at ±1.85 m and ±0.90 m (not optimized).
 - Deflections of outer cylinder are not taken into account.
Dry air was assumed to enter the barrel at a temperature of -15°C. We assumed no heat transfer from the beam pipe to the innermost layer, that is, the beam pipe would have thermal intercepts. A total power dissipation of 20 watts was assumed for the barrel. Based upon the results, that seems reasonable.

Cooling performance as a function of Reynold’s number

<table>
<thead>
<tr>
<th>Reynold’s number</th>
<th>Total barrel flow (g/s)</th>
<th>Ave. ΔT air (°C)</th>
<th>Max sensor T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>9.0</td>
<td>2.21</td>
<td>-2.44</td>
</tr>
<tr>
<td>1200</td>
<td>13.5</td>
<td>1.47</td>
<td>-4.61</td>
</tr>
<tr>
<td>1800</td>
<td>20.2</td>
<td>0.98</td>
<td>-6.36</td>
</tr>
</tbody>
</table>

Results as a function of layer are shown on the transparencies which follow.
VXD Barrel Cooling

Average Sensor Temperature for 20 Watts, -15 C Air Supply

Sensor temperature (degrees C)

Layer

N_Re 1800
N_Re 1200
N_Re 800
VXD Barrel Cooling

End-to-end Temperature Difference for 20 Watts, -15 C Air Supply

Sensor temperature difference (degrees C)

Layer

N_Re 1800
N_Re 1200
N_Re 800
Disk Cooling and Manifolding

• Sensors of the four disks per end closest to the barrel were assumed to have the same power dissipation per unit area as barrel sensors, 131 µW/mm². For eight disks (both ends) power dissipation would be 17 watts.

• Two options were considered for the three outermost disks per end.
 – Pixels twice the size in each transverse dimension as those of the barrels, so ¼ the power per unit area. Total power dissipation (both ends) = 13 watts.
 – Pairs of silicon micro-strips. Total power dissipation (both ends) = 7 watts.
 – We assumed the larger of the two values, 13 watts.

• To size manifolding to deliver and distribute air, we assumed power dissipation of the barrel and all disks would total 50 watts.

• One obvious possibility is to distribute air via the outer support cylinder. For a 15 mm wall separation, nearly the full circumference is needed to maintain laminar flow. (The Reynold’s number in portions seeing full flow = 1900). We assumed air entered support cylinder passages at a temperature of -20° C.
Summary

• A design based largely upon carbon fiber support structures has been developed.
 – That design is intended to be suitable for sensor operation at > -10° C.
• Feasibility of the design depends upon sensor developments.
 – We expect to follow developments and to take them into account.
• An initial FEA model has been developed for barrel sensor structures.
 – Gravitational deflections for 125 mm barrel sensors are small.
 – Deflection of a ladder with simple support at its ends is noticeably larger.
• We have begun to re-examine beam pipe deflections and the outer vertex detector support cylinder.
 – Changes could result.
• An initial study suggests that approximately 20 watts can be removed from the barrel, and 50 watts from the entire vertex detector, by air cooling with laminar flow.
• The number of radiation lengths represented by VXD structures has been reduced considerably (earlier talk at this workshop).