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PHENIX today
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How PHENIX works
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History lessons and future directions

The devil in the details:

PHENIX needs luminosity, acceptance and sensitivity to right probes

-PHENIX contribution to sQGP discovery heavily relied on p0O and direct g
measurements in central electromagnetic calorimeters: build on success — extend
acceptance for electromagnetic probes;

-All experiments at RHIC measure jets only indirectly — via leading particles. Include
direct jet measurements whenever possible;

-Use unique feature of PHENIX: muon spectrometer

Optimal strategy for upgrade:

Convert

PHENIX Forward Muon System

Into

PHENIX Forward Spectrometer



PHENIX Upgrade
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Constrains

-space

40 cm from collision vertex
20 cm total depth

-no tracking upstream
(momentum and charge
unknown)

Forward (Nosecone)

W-Si Calorimeters , G O a.l S

-Reasonable energy resolution for em
probes;

-Best possible separation between/em
and hadronic signals

-Ability to reconstruct p0O’s to /,0 GeV/c

Magnet Poles -Jet WO entification and cone ey ergy

measurements for lepton ging and
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NCC —tracking

calorimeter

Parameter Value Comment

Distance from collision vertex 40 cm

Radial coverage 50 cm

Geometrical depth ~19 cm

Absorber W | 42 Lrad or 1.6 Labs

Readout Si pads (15x15 mmz2) and pixeleted strips (.0.5x0.5 mm pixels grouped into 60 mm long
strips)

Calorimeter EMC(12 sampling cells: 3mm W + 2.5 mm readout) longitudinally structured into two

identical nonprojective sections.

Leakage(6 sampling cells: 15 mm W + 2.5 mm readout)

Preshower detector (PS)

2 Lrad W converter followed by a stripixel layer (0.5 mm strips) with 2-d readout

Shower max detector (SMD)

In between two EM sections at ~ 7 Lrad depth. Stripixel layer (0.5 mm strips) with 2-d

readout
Multiple scattering in NCC 133 MeV | To compare with 106 MeV in the existing configuration with Cu
combined with Fe magnet pole NoseCone
Expected EM energy resolution % | ~20/sqrt(E)
Expected jet energy resolution % ~100/sqrt(E)
Two showers | in calorimeter 3cm
resolved at . . . . .
in preshower 2mm In simulation effective for shower separation down to 4 mm
in shower max. 4 mm
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2-d pixilated strip sensors

Pad-structured sensors
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Design optimization

-Total depth fixed to 19 cm
-Three segments (EM1/EM2/Hadronic)

-Plate thickness in EM segments varied
from 2 mm up in steps of 0.5 mm

-Plate thickness in Had segment is
“whatever fits” the total depth limit

ha

i Detector modifications to electron spectra
- 2 EM + 1 Had compartments {8 sc par camp.)
W thlckness from Zmm to 5 mm
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Design optimization:
electromagnetic vs hadronic

C Suppression of pion spoctrum
:1 & sampling calls per compartmant
Y thickness in the sampling cell is from 2 o 5 mm

50 60
P[GeVic]

-correlations between plate thicknesses
inlem and hadronic segments push
towards thicker plates in em segments;

-Optimal em resolution and discrimination
power is reached for W plates in em
segments 3 mm or thicker;

-For a fixed total calorimeter depth there
could be advantages to using Pb instead
of W in hadronic segment.
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PO — recognition/reconstruction

Select clusters of amplitudes in all segments;

Combine energy ordered clusters from different
segments into “tracks”

Define “regions of interest” in PS and SM foe every
cluster (cluster energy dependent);

Discount clusters with only one hit in PS, for multiple hits
In PS — compute separation between two hottest hits;

Select two clusters in SM (constrained by hit separation
In PS) and fit energy ratio;

Use total track energy, hit separation from PS and
energy ratio from SM to compute effective mass;

Retain those within pO window as “p0” candidates, build
effective mass combinatorics among everything else.
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Claims to substantiate
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70 losses today

n0 reconstruction efficiency
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R&D 2004-2005: BNL-MSU-UCR-RIKEN

DC coupled, pad structured - completed
AC coupled, pad structued - completed

DC coupled, r-biased, pad structured — at ELMA
and ON Semi

StriPixels

500u
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Current and Capacitance at 50V
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We can really do it
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Eneregy resolution
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Position resolution [cm]

Pointing resolution
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R&D to complete 2006-2007

R&D 2006-2007: Development 2006(k$)  2007(k$9) Total(k$) Funding source
Pxilated strip sensors (StriPixels) 26,300 26,300 RIKEN R&D
Pad-structured readout units 18,565 18,565 DOE Generic R&D
Strip-structured readout units 5,000 15,000 20,000 RIKEN R&D
Pad readout analog elecronics 15,200 15,200 RIKEN R&D
Pad readout digital electronics 3,000 5,813 8,813 DOE Generic R&D
StriPixel readout electronics 4,000 8,250 12,250 RIKEN R&D
R&D 2006-2007: Design and Prototyping

Mechanical Design 60,000 60,000 UCR R&D
Pad-structured sensors 70,000 22,531 92,531 RIKEN R&D
Pad-structured ROU's 5,000 19,323 24,323 DOE Generic R&D
Electronics for pad-structured layers 10,000 27,500 37,500 DOE Generic R&D
Pixilated strip sensors (StriPixels) 10,540 10,540 DOE Generic R&D
StriPixel ROU's and electronics 18,185 18,185 DOE Generic R&D
Mechanical Structure 5,000 8,850 13,850 DOE Generic R&D
Testing (bench and Test beam) 17,038 17,038 DOE Generic R&D
2006-2007 request to DOE 41,565 107,247 148,812

2006-2007 request to RIKEN 105,300 60,981 166,281

Others (UCR) 60,000 0 60,000
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Project at a glance

Funding Source Basecost| Contingency [2d| Owverhead [24 Cost to Proj

DOE Gereric R&D Funds $104,500 31 175 $160,323
RIKEN R&D Funds $138,500 10 $152,500
UCR R&D Funds $650,000 20 $60,000
MSU R&D Funds 0 0 0
JINR (Dubna, Russia) R&D Funds $0 0 $0
Czech group R&D Funds $0 0 $0
Korean group R&D funds $0 0 $0
DOE Construction Funds $2431,630 A 175 $3,823540
Collaboration construction funds $2,386,630 44 $3426,804
NCC Project $5,189,759 37 $3,301,003
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Summary

e Thereis alot of momentum ......

 Next two years are
— To substantiate the performance claims;
— To accumulate data to build analysis chain;
— To finish design and test production chain;

 Three years for construction project are tough but
feasible. We can get to the physics of saturation in
2010.
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