E.Kistenev

Silicon – W Calorimeters for the PHENIX Forward Upgrade

2/8/2006

PHENIX today

How PHENIX works

• Centrality selection : Sum of **Beam-Beam Counter**

(**BBC**, $|\eta|=3\sim4$) and energy of Zero-degree calorimeter (ZDC)

• Extracted N_{coll} and N_{part} based on

History lessons and future directions

The devil in the details:

PHENIX needs luminosity, acceptance and sensitivity to right probes

-PHENIX contribution to sQGP discovery heavily relied on p0 and direct g measurements in central electromagnetic calorimeters: build on success – extend acceptance for electromagnetic probes;

-All experiments at RHIC measure jets only indirectly – via leading particles. Include direct jet measurements whenever possible;

-Use unique feature of PHENIX: muon spectrometer

Optimal strategy for upgrade:

Convert

PHENIX Forward Muon System

into

PHENIX Forward Spectrometer

PHENIX Upgrade

Constrains

-space 40 cm from collision vertex 20 cm total depth -no tracking upstream (momentum and charge unknown) Forward (Nosecone) W-Si Calorimeters **Central and Forward Silicon Vertex Tracker Magnet** Poles

2/8/2006

PHENIX U

Goals

-Reasonable energy resolution for em probes;

-Best possible separation between em and hadronic signals

-Ability to reconstruct p0's to ~30 GeV/c

-Jet identification and cone energy measurements for lepton tagging and isolation testing

NCC –tracking calorimeter

Parameter		Value	Comment		
Distance from collision vertex		40 cm			
Radial coverage		50 cm			
Geometrical depth		~19 cm			
Absorber		W	42 Lrad or 1.6 Labs		
Readout		Si pads (15x15 mm2) and pixeleted strips (.0.5x0.5 mm pixels grouped into 60 mm long strips)			
Calorimeter		EMC(12 sampling cells: 3mm W + 2.5 mm readout) longitudinally structured into two identical nonprojective sections. Leakage(6 sampling cells: 15 mm W + 2.5 mm readout)			
Preshower detector (PS)		2 Lrad W converter followed by a stripixel layer (0.5 mm strips) with 2-d readout			
Shower max detector (SMD)		In between two EM sections at ~ 7 Lrad depth. Stripixel layer (0.5 mm strips) with 2-d readout			
Multiple scattering in NCC combined with Fe magnet pole		133 MeV	To compare with 106 MeV in the existing configuration with Cu NoseCone		
Expected EM energy resolution %		~20/sqrt(E)			
Expected jet energy resolution %		~100/sqrt(E)			
Two showers resolved at	in calorimeter	3 cm			
	in preshower	2 mm	In simulation effective for shower separation down to 4 mm		
	in shower max.	4 mm			

Design optimization

- -Total depth fixed to 19 cm
- -Three segments (EM1/EM2/Hadronic)
- -Plate thickness in EM segments varied from 2 mm up in steps of 0.5 mm
- -Plate thickness in Had segment is "whatever fits" the total depth limit

Design optimization: electromagnetic vs hadronic

-correlations between plate thicknesses in em and hadronic segments push towards thicker plates in em segments;

-Optimal em resolution and discrimination power is reached for W plates in em segments 3 mm or thicker;

-For a fixed total calorimeter depth there could be advantages to using Pb instead of W in hadronic segment.

P0 – recognition/reconstruction

- Select clusters of amplitudes in all segments;
- Combine energy ordered clusters from different segments into "tracks"
- Define "regions of interest" in PS and SM foe every cluster (cluster energy dependent);
- Discount clusters with only one hit in PS, for multiple hits in PS – compute separation between two hottest hits;
- Select two clusters in SM (constrained by hit separation in PS) and fit energy ratio;
- Use total track energy, hit separation from PS and energy ratio from SM to compute effective mass;
- Retain those within p0 window as "p0" candidates, build effective mass combinatorics among everything else.

Claims to substantiate

2/8/2006

R&D 2004-2005: BNL-MSU-UCR-RIKEN

DC coupled, pad structured - completed

AC coupled, pad structued - *completed*

DC coupled, r-biased, pad structured – *at ELMA and ON Semi*

Current and Capacitance at 50V

We can really do it

Eneregy resolution

Pointing resolution

2/8/2006

R&D to complete 2006-2007

R&D 2006-2007: Development	2006(k\$)	2007(k\$)	Total(k\$)	Funding source
Pxilated strip sensors (StriPixels)	26,300		26,300	RIKEN R&D
Pad-structured readout units	18,565		18,565	DOE Generic R&D
Strip-structured readout units	5,000	15,000	20,000	RIKEN R&D
Pad readout analog elecronics		15,200	15,200	RIKEN R&D
Pad readout digital electronics	3,000	5,813	8,813	DOE Generic R&D
StriPixel readout electronics	4,000	8,250	12,250	RIKEN R&D
R&D 2006-2007: Design and Prototyping				
Mechanical Design	60,000		60,000	UCR R&D
Pad-structured sensors	70,000	22,531	92,531	RIKEN R&D
Pad-structured ROU's	5,000	19,323	24,323	DOE Generic R&D
Electronics for pad-structured layers	10,000	27,500	37,500	DOE Generic R&D
Pixilated strip sensors (StriPixels)		10,540	10,540	DOE Generic R&D
StriPixel ROU's and electronics		18,185	18,185	DOE Generic R&D
Mechanical Structure	5,000	8,850	13,850	DOE Generic R&D
Testing (bench and Test beam)		17,038	17,038	DOE Generic R&D
2006-2007 request to DOE	41,565	107,247	148,812	
2006-2007 request to RIKEN	105,300	60,981	166,281	
Others (UCR)	60,000	0	60,000	

Project at a glance

Funding Source	Base cost	Contingency [%]	Overhead [%]	Cost to Project
DOE Generic R&D Funds	\$104,500	31	17.5	\$160,323
RIKEN R&D Funds	\$138,500	10		\$152,500
UCR R&D Funds	\$50,000	20		\$60,000
MSU R&D Funds	\$0	0		\$0
JINR (Dubna, Russia) R&D Funds	\$0	0		\$0
Czech group R&D Funds	\$0	0		\$0
Korean group R&D funds	\$0	0		\$0
DOE Construction Funds	\$2,431,630	34	17.5	\$3,823,540
Collaboration construction funds	\$2,386,630	44		\$3,426,804
NCCProject	\$5,189,759	37		\$8,301,003

Summary

- There is a lot of momentum
- Next two years are
 - To substantiate the performance claims;
 - To accumulate data to build analysis chain;
 - To finish design and test production chain;
- Three years for construction project are tough but feasible. We can get to the physics of saturation in 2010.