Focus Point Phenomenology

"LCC2" Benchmark studies

Linear Collider Cosmology Connection

University of Florida

Andreas Birkedal . Konstantin Matchev

theorists

Cornell University

graduate students. Richard Gray Dan Hertz Laura Fields Jim Pivarski On the job market - postdoc. Karl Ecklund On the job market - faculty. Chris Jones Dan Riley Jim Alexander

Focus Point Benchmark LCC-2

p2/31

Cosmological Connections

p3/31

Detector Benchmarking

	Process and	Energy	Observables	Target	Detector	Notes
	Final states	(TeV)		Accuracy	Challenge	
				1		
	$ee \to Z^0 h^0 \to \ell^+ \ell^- X$	0.35	$M_{recoil}, \sigma_{Zh}, BR_{bb}$	$\tau_{Zh} = 2.5\%, \delta BR_{bb} = 1\%$	Т	{1}
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	$M_{\text{recoil}}, \sigma_{Zh}, BR_{bb}$ Jet flavour $M_{\text{recoil}} SLis$ Barklow's Lis	$h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times \text{BR}) = 1\%/7\%/5\%$	V	{2}
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	Mar JON'S L'	$\sigma(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	С	{3}
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, h^0 \rightarrow \gamma \gamma$	10	Darklow	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	С	{4}
	$ee \rightarrow Z^0 h^0, h^0 \nu \bar{\nu}, h \rightarrow \mu^+ \mu$	rim	Bui	5σ Evidence for $m_h = 120$ GeV	Т	$\{5\}$
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow invisible$	/	0 qqE	5σ Evidence for BR _{invisible} =2.5%	С	$\{6\}$
	$ee \rightarrow h^0 \nu \bar{\nu}$	0.5	$\sigma_{bb\nu\nu}, M_{bb}$	$\delta(\sigma_{\nu\nu h} \times BR_{bb}) = 1\%$	С	{7}
	$ee \rightarrow t\bar{t}h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$	С	{8}
	$ee \rightarrow Z^0 h^0 h^0, h^0 h^0 \nu \bar{\nu}$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	С	{9}
	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V	{10}
	$ee \rightarrow W^+W^- \nu \bar{\nu}/Z^0 Z^0 \nu \bar{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	С	{11}
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta m_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	Т	{12}
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ (Point 1)}$	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0}) = 200 \text{ MeV}$	Т	{13}
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1$ (Point 1)	1.0		$\delta m_{\tilde{t}_1} = 2 \text{ GeV}$		{14}
-CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta m_{\tau_1} = 1 \text{ GeV}, \ \delta m_{\chi_1} = 500 \text{ MeV}$	F	{15}
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi_1^+ \chi_1^-}$ (Point 2)		M_{jj} in $jjE, M_{\ell\ell}$ in $jj\ell\ell E$	$\delta \sigma_{\chi_2 \chi_3} = 4\%, \ \delta(m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}) = 500 \text{ MeV}$	С	{16}
	$ee \rightarrow \chi_1^+ \chi_1^- / \tilde{\chi}_1^0 \tilde{\chi}_1^0$ (Point 5)	0.5/1.0	1	$\delta\sigma_{\tilde{\chi}\tilde{\chi}} = 10\%$, $\delta m_{\tilde{\chi}^0_2} = m_{de\chi^0_1} = 2 \text{ CeV}$	С	{17}
	$ee \to H^0 A^0 \to b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta m_A = 1 \text{ GeV}$	С	{18}
-alternative	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta m_{\tilde{\tau}_1}$	Т	{19}
SUSY	$\chi_1^0 \to \gamma + \not\!$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С	{20}
breaking	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi_{soft}^{\pm} \text{ (Point 8)}$	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m}{=}0.2{\text{-}}2~{\rm GeV}$	F	{21}
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V	{22}
New Physics	$ee \rightarrow f\bar{f} \ (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M(Z_{LR}) = 7$ TeV	V	{23}
	$ee \rightarrow \gamma G \text{ (ADD)}$	1.0	$\sigma(\gamma + \vec{E})$	5σ Sensitivity	С	{24}
	$ee \to KK \to f\bar{f} \ (RS)$	1.0			Т	$\{25\}$
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		$\delta m_{top} = 50 \text{ MeV}$	Т	{26}
Meas.	$ee \rightarrow Z^0 \gamma$	0.5/1.0			Т	{27}

Snowmass Points and Slopes Benchmarks

Since the scalars are heavy in this scenario, they decouple.

As a result, neutralino and chargino production and decay mechanisms are rather simple, with usually only one contributing amplitude.

Focus Point Spectrum

Spectrum computed by ISAJET

Studies Presented at LCWS-05

Talks:

- Richard Gray
 - hep-ex/0507008
- Andreas Birkedal
 - hep-ph/0507214

Studies Presented at LCWS-05

Talks:

- Richard Gray
 - hep-ex/0507008
- Andreas Birkedal
 - hep-ph/0507214

Results (500fb⁻¹):
$$m(\chi_{0}^{0}) - m(\chi_{1}^{0}) = 82.3 \pm 0.2$$

$$m(\chi_3^0) - m(\chi_1^0) = 52.5 \pm 0.2$$

 $m(\chi_2^0) - m(\chi_1^0) = 58.8 \pm 0.3$

$$m(\chi_1^0) = 108.3 \pm 1.0$$

$$\frac{\varepsilon_2\varepsilon_3}{\varepsilon_1} = +-$$
 (13 σ)

Production

Production: The $\chi_1^+\chi_1^-(Z^0,\gamma)$ vertex

(a) for photon coupling, R=L
(b) for ZO coupling R≠L, but in this case (R-L)/(R+L) ~ -0.09. Afb is small.
(C) χ+- wino and higgsino components couple differently; results in significant beam polarization dependence.

Couplings are hard. Spectroscopy is easier.

Mass determinations can be done at LHC albeit with limited resolution.

Unfolding couplings and mixings is unique to ILC. But not too hopeful in this particular case.

"hard"

Particle content, couplings, etc

p14/31

Kinematics of the hadronic system

$d\Gamma/dM$

Note: ζ is asymmetry in vector & axial-vector couplings at χ^+ W*+ χ^0 vertex:

$$\zeta \equiv \frac{v_+^2 - a_+^2}{v_+^2 + a_+^2}$$

- Dependence:
 - Strong: m_+ m_0
 - Medium: ζ
 - Weak: m₊+ m₀

Fit yields m_+ - m_0 and ζand they are strongly (+) correlated

Example: toy expts fitting to $d\Gamma/dM$

Generate ~500 toy expts, fit to formula.

• Thus for a given M, $d\Gamma/dE$ measures the angular distribution $d\Gamma/\cos\theta^*$.

• This distribution depends on m+, m0,... as well as R_+, L_+ couplings and degree of χ + polarization...

$d\Gamma/dE$

If $d\Gamma/\cos\theta^*$ is symmetric, then $\langle\cos\theta^*\rangle = 0$.

- We can ensure symmetry of $d\Gamma/\cos\theta^*$ by ignoring opposite-side-lepton sign -- so we do not distinguish χ^+ , χ^-
- Alternatively, $d\Gamma/\cos\theta^*$ may be flat (eg if χ + is unpolarized... which it basically is, it turns out).

Assuming $\langle \cos \theta^* \rangle = 0$, we find:

$$\langle E \rangle = \langle \gamma \rangle E^* = a + bM^2$$

$$\left\{ \begin{array}{c} a = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{m_0}{m_+}\right)^2 \right) \\ b = \frac{\sqrt{s}}{4m_+^2} \end{array} \right\}$$

$$\begin{array}{c} \text{Mainly} \\ \text{sensitive} \\ \text{to the ratio} \\ m_+/m_0 \end{array}$$

Note: in ISAJET $d\Gamma/\cos\theta^*$ = flat.

p19/31

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

p20/31

Simulation Details

Background Suppression

Signal and Backgrounds

p24/31

Detector Resolution Matters!

Yields, σ_L , σ_R

Counting events in FASTMC with Analysis "B"

	left-pol.	right-pol.
Signal $(\chi_1^+\chi_1^- \to e^{\pm}jj(g))$	12421	1592
SUSY backgrounds (including $\chi_1^+\chi_1^-$ to other modes)	1751	480
Standard Model backgrounds	3170	1209
Cross-section measurement	940 ± 10 fb	$119\pm4.3~{\rm fb}$

~1% on total cross section (or
$$\sigma_L$$
)
~4% on σ_R .
$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = 0.78 \pm 0.01$$

Note: this polarization asymmetry is due to lopsided chargino content. $e_R e_L$ only couples to (small) higgsino component of chargino. Thus the cross section measurement alone probes mixing.

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

Simultaneous fit for $d\Gamma/dM \& d\Gamma/dE$

250 toy experiments: 10K evts, σ_F =30%/JE

 $m_+ = 158.5 \pm 0.8$ $m_0 = 107.1 \pm 0.6$ (generated value: 159.4) (generated value: 107.7)

250 toy experiments: 10K evts, $\sigma_{\rm E}$ =30%/JE

Mass Sensitivity vs Detector Resolution

Dependence on "jet" energy resolution is somewhat mild...

CAVEATS! 1. No bkg included. Bkgs will raise the floor and the slope.

- 2. Toy Monte Carlo...
- 3. Preliminary!

$$X \qquad (\sigma_E/E = X \% / \sqrt{E})$$

Res 0%	mchg +-0.66	mlsp +-0.56	mdiff +- 0.19	zeta +-0.020
30%	+- 0.8	+- 0.6	+- 0.25	+-0.025
60%	+- 1.3	+- 0.9	+- 0.47	+-0.039

Other things to pursue...

- Lepton spectrum (other side of event) also contains useful kinematic info. Use it!
- Threshold production: mass, spin; fully polarized.
- Beam polarization, A_{LR}, A_{LRFB},...
- Neutralino production needs to be revisited: purely ZO produced; richer content. R,L couplings?? Threshold production?
- Detector benchmarking.