Issues concerning beam direction of Collision IP and Compton IP
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e@ anti-DID for intermediate crossing angle

e Normal polarity of Detector Integrated Dipole (DID) allows to
compensate locally the effect of crossing the solenoid field for the
incoming beam, while the field seen by outgoing beam (and low
energy pairs) about doubles

e Reversing polarity of Detector Integrated Dipole (anti-DID) could
effectively zero the crossing angle for outgoing beam (and pairs)
but would increase it (1.5-1.6 times) for incoming beam

e [ncreasing the effective crossing angle for incoming beam may
create too much synchrotron radiation size growth (which

depend as Acp~0°572)

e Smaller initial crossing angle (14mrad) ease the use of anti-DID
— the effective angle with anti-DID is ~21-22mrad

o Compensation of vertical angle possible can be done less locally
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Solenoid field only (NO DID)
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| DID field
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e Coil wound on detector solenoid, giving transverse field, such
that the combined field from
solenoid, Detector Integrated Dipole, and QDO
would result in zero vertical angle at the IP
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Standard DID

e For standard DID, can zero
yand y at IP

e Correction is local and very
effective

e No increase of SR

e But the post IP field is
increased by DID =>
low E pairs directed away
from extraction aperture
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fiebds acting in ¥
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ef’é Incoming beam with anti-DID, example for siD
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Y-angle at IP & polarization measurements

e Options with 14mrad and anti-DID

Zero IP Y-angle with dipole coils in FD (~2.8% Lumi

impact in SiD)

or decrease it to < 50urad (negligible Lumi impact)
® |P position offset can be easily handled

Leave IP angle not corrected, but create Y angle at
downstream diagnostics, exactly as at the IP
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Spin Precession
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Change in Bend Angle Change in Spin Longitudinal
Direction at 250 GeV | Polarization Projection
1 mrad 3250 84.3%
275 urad 8.9° 98.8%
100 prad 3.25 ° =56mrad 99.8%

Change in spin direction for various bend angles and the projection of the
longitudinal polarization. Electron beam energy is 250 GeV.
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Beam Properties

Parameter ete-
c(0,)" 35 urad
c(,)" 10 prad
c(0,)°u 275 prad
c(8,)°" 55 urad

(APBMT)IP-Lum wit 0.3 %

Angular divergences of the incoming and outgoing disrupted beams for
ILC collision parameters.
BMT depolarization due to the angular divergences.
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From K. Yokoya talk at MDI workshop
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R- Transport matrix

The R-Transport matrix from the collider IP to the extraction line Compton IP allows one
to compare the beam parameter phase space between the two locations,

‘Jf>r:hmﬂe — R‘ x>ﬂ-;. for beam parameters (x,x". v,y z, dE/E)

R22 and R44 give the angular magnification from collider I[P to Compton IP.
- R22 most important for e+e-, since horizontal angles dominate.
- R22 close to -0.5, polarimeter measurement close to lum-weighted P
sensitive to both BMT and spin flip depolarization
- R22 close to O, polarimeter will only measure spin flip depolarization.
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Depolarization

Klaus Monig has been looking at sensitivity to misalignment of longitudinal
Polarization at the Collider IP for the extraction line polarimeter measurements.

Results using old optics R22 = -0.595 (from collider IP to Compton IP):
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Uses one of the TESLA TRC files, Guinea-PIG simulation
R22 = -0.595 500nm horizontal offset (~1 sigma)
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Comments

» Polarimeter measures “green” results at Compton IP. We want “red” = Lum-wted P.
* Prefer R22 close to -0.5 so good sensitivity to BMT and spin flip.
e Important to limit
1. Spin angle misalignment <25mrad (corresponds to angular alignment ~50 urad
at 250GeV)
2. Horizontal offsets (<250nm).

Use depolarization vs beam offset determined from IP BPMs as diagnostic for spin
miss-orientation at IP.
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Spin Alignment Procedures

The procedure for setting the spin direction so the electrons are longitudinally
polarized at the IP is as follows:

Accurate beamline and quad alignment is needed to achieve <~10urad orbit tolerance
between the IP and either upstream or downstream polarimeter locations.

Obtain reference orbit through the extraction line with solenoid off and with electron-
beam only (no collisions).

Optimize spin rotator settings with solenoid off. Perform a “3-state measurement” with
each of x, y and z spin orientation in the Linac: measure the longitudinal spin
component at each of the upstream/downstream polarimeters for each of the 3 spin
orientations. The z-component of the spin transport matrix, S, between the Linac and
the polarimeter can then be determined using

Pj'n::'.?ﬂ?imﬂﬁ" _ Sﬂ _ ﬂﬁmu + Sﬂ _ Pyﬁﬁu + SE . E{ﬁw

This determines the (unitary) spin transport matrix. It can be inverted to determine the
optimal RTL and LINAC spin rotator settings to achieve longitudinal spin at the
polarimeter.
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Spin Alignment Procedures con't

Scan each individual spin rotator about optimal to check or fine tune the settings.

Turn on the solenoid and serpentine/dipole compensation and reproduce the
extraction line orbit. Then repeat the spin rotator optimization procedure described
in steps above.

Analysis of this data should verify the relative alignment of the upstream and
downstream polarimeters and determine the uncertainties in orbit and spin
alignment between the polarimeters and the IP.

We expect to achieve 25 mrad tolerances for the orientation of the spin at either
the upstream or downstream polarimeters via the procedure described above.
Additionally, we expect to achieve a tolerance of 50 urad for the orbit between the
IP and either polarimeter, with the IR solenoid off; the largest uncertainty comes
from the orbit through the Interaction Region. Lastly, we expect to compensate the
crossing angle/solenoid steering effects to better than 10%.
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Other Spin Transport Studies
Needed

e Spin transport studies of electron beam
through helical undulator

Spin diffusion
Spin rotation
Spin flip

 Positron polarization spin transport

Optimum energy and energy spread of
positrons in return line to positron damping
rng.
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