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Introduction

• SiD is a silicon based detector

– Silicon pixel vertex detector

– Silicon strip tracking for the inner detector

– Silicon-tungsten ECAL

– Fine grained (RPC?) HCAL

• Cost optimization results in a relatively small radius of the inner

detector of R ' 1.25m with large 5 T field

See Snowmass talks from Breidenbach and Weerts

FCAL Tel-Aviv University 2 19 Sept 05 – David Strom – UO



Energy flow drives most of the design

Hermeticity is also important

• Processes such as

e+e− → τ̃+τ̃−

→ τ+χ̃0τ−χ̃0

are tagged using momentum imbalance

• Can be faked by

e+e− → e+e−τ+τ−

with missing final state e+ or e− that carry pt
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Quadrant View
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BR^2 Fixed, Vary R_Trkr
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Bill Cooper's opening scheme (Endcap not split)

FCAL Tel-Aviv University 6 19 Sept 05 – David Strom – UO



Layer Assembly 
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Silicon Concept

• Readout each wafer with a

single chip

• Bump bond chip to wafer

• To first order cost indepen-

dent of pixels /wafer

• Hexagonal shape makes op-

timal use of Si wafer

• Channel count limited by

power consumption and area

of readout end chip

• May want different pad lay-

out in forward region
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Silicon Detector Design

• DC coupled detectors

(avoids bias resistor net-

work)

• Two metal layers

• Keep Si design as simple as

possible to reduce cost

• Cross talk looks small with

current electronics design

• Trace capacitances (up to

30pF) are bigger than the

5 pF pixel capacitance
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Notes on silicon based calorimetry

• For large projects, price depends on silicon area (perhaps 3/cm2)

• Ratio of area a hexagon inscribed

in a circle to a square inscribed in a

circle:
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• Price of mask set for different shapes is likely a fixed cost of about

50K USD.

• 50K USD is equivalent to approximately 150 wafers at 3 USD/cm2

• Price could be reduced if specialized pieces where built in-house.

• More than one small piece/wafer may be possible
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Possible endcap layout

• Requires ∼ 15 different

mask sets for zero crossing

angle

• Nearly twice as many are

required if luminosity moni-

tor is offset to be centered

on outgoing beam

• Could rotate silicon pattern

45◦ on alternate layers

• Will need 1cm clearance

between lumi and endcap.

Lumi
Barrel
ECAL
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Alternative layout

• Radial design allows for ra-

dial pads on endcap

• Radial design would require

at least 13 different masks

• Wedges make poor use of

silicon area on a wafer

• For an Octagonal outer

edge, many more masks

needed

LumiBarrel
ECAL
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Crossing Angles – Two regimes

• Large crossing angle with separate input and exit apertures. Minimum
angle limited by the magnet size.

• Minimum large angle could be as large as ∼ 20mrad

• Small crossing angle with shared input and exit apertures. Maximum
angle limited by magnet bore (typically 8-9 cm)

• Maximum angle is ∼ 2mrad

For physics zero crossing angle is usually preferred.

For machine operation a large crossing angle is better.
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Advantages of large crossing angles for machine operation:

• ∼ 10% of 10 MW beam power in photons is brought directly to the
beam dump

• Input and output beam optics can be adjusted with maximum flexibility

• Synchrotron radiation from soft bends in incoming beam can be
blocked without interfering with outgoing beam

• Allows for operation at
√

s > 1TeV

• Allows for small bore (∼ 2 cm magnets)

• Allows for down-stream instrumentation for determining beam polar-
izations
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Disadvantages of small cross angle for machine operation:

• Requires very large bore magnets for final elements

• 2mrad bend imposes on CM energy limit from synchrotron radiation

• Shared function of magnets leads to less flexibility for the machine

• Large amount of energy dissipated in final magnets
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• Snowmass conclusion (Andrei Seryi)

wg4 1st week summary    10 Aug 19, 2005
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• Better detector hermeticity & background of 2mrad IR comes 
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• SiD designed to accommodate a 20mrad crossing angle

Si D Forward Masking, Calorimetry & Tracking 2005-09-15
20mrad, L*=3.51m

BeamCal
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FCAL Tel-Aviv University 18 19 Sept 05 – David Strom – UO



Probably best to center luminosity monitor on outgoing beam
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How does a kink in the solenoid effect the background?
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• Detail showing clearance

between lumi and endcap.

• Note that HCAL is cen-

tered on the detector axis.

• Some electrons will be

tagged by the HCAL

• Must support luminosity

monitor with a minimum of

material outside of detector

17.4 cm
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Lumi Detector Geometry
• It is essential to survey the detector at the micron level with
cosmic ray muons or test beam.
⇒ Electronics must have MIP sensitivity even if it is not needed
by the luminosity measurement
⇒ MIP sensitivity needed for possible muon veto (See Graham Wilson’s
Calorimeter talk).

• Detectors should fit on a single wafer

• SiD geometry

Rmin ' 8.7 cm (∼ 50mrad)

Rmax ' 24.7 cm(∼ 150mrad)

⇒ 8 inch wafers would be needed

• Rate at 500 GeV is ∼ 8 bhabhas

bunch train – Inner radius could be

much larger and 6 inch wafers used

8 inch wafer

64 radial pads

Moliere Radius
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Electronics

• The ECAL electronics (Kpics) have chips with 1024 channels and

store up to 4 hits/bunch train:
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A note on a shaping times

• For the ECAL calorimeter, maximum leakage current from radiation is

expected to be < 10nA. ⇒ Gives negligible contribution to noise (< 500

electrons)

• In the lumi-detector, this number could be a factor of 30 higher or

more.

• At 300nA, 1 µs integration, shot noise is ∼ 1400 electrons.

• A shorter shaping time may be needed.
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• Calorimeter approach could be extended to include a large number
of buffers for each channel, e.g. 128 Channels Chip each with 128
capacitors for storing charges for up to 128 bunches would fit into the
same area as is presently used for the calorimeter:

Single Cell Layout
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• A more likely scenario would be to readout every bunch crossing.

This would require a different digitization technique, either SAR or a

pipelined ADC with 12 stages. 128 channels would probably fit into the

space presently used by the 1024

• Assume Successive Approximation ADC with 12 bits + range, digitiz-

ing at 3MHz (internal clock is 36MHz). Data rate is 576 MBytes/s/chip

during bunch train (∼ 3.0MBytes/s sustained)

• On-detector electronics cost will be dominated by development costs

(very similar to run needed for test beam)

• Won’t save much money by reducing channels/wafer

• Power consumption should be reasonable, but no design yet for cooling

in the endcap in SiD. LDC will be easier.
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Conclusion

• SiD thinking about forward region is in very early stages – your input

is needed and welcome

• Precision luminosity measurement with cross angle seems possible

• Main lumi worry is potential background from machine and physics

backgrounds

⇒ Main overall challenge is to engineer luminosity monitor and

endcap without large areas with dead material

• Many costs in the forward region will be fixed by R&D rather than

part count – keep this in mind when designing detectors

FCAL Tel-Aviv University 27 19 Sept 05 – David Strom – UO



Issues from the Tel Aviv FCAL meeting relevant to SiD

• Investigation of the properties of diamond radiation detectors, K.
Afanaciev, I. Emeliantchik, A. Ignatenko, E. Kouznetsova, W. Lohmann
(mainly NCPHEP, Minsk)

• CVD diamonds, Christian Grah (DESY-Zeuthen)

• Backgrounds studies from K.Buesser/Desy HH, presentations at
snowmass, extended by Christian Grah (DESY-Zeuthen)

• Comparison of BeamCal performance at Different ILC Designs, Vladimir
Drugakov NC PHEP, Minsk / LAL, Orsay.

Many more talks available at:

http://alzt.tau.ac.il/~fcal/
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Investigation of the properties of diamond radiation detectors, K. Afana-

ciev (Minsk)

Work based on:

• Chemical vapor deposited (CVD) polycrystalline samples (IAF)

• 12x12 mm plates with thickness 200 - 700 µm

• Metallization: 10 nm Ti + 400nm Au
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Example of radiation behavior of

good detectors

Example of radiation behavior of

bad detectors

Currently exploring photoluminescence spectra of different samples to

find correlation with behavior

FCAL Tel-Aviv University 30 19 Sept 05 – David Strom – UO



CVD Diamond Sensors for the Beam Calorimeter of the ILC (C. Grah)

Work based on polycrystalline CVD

diamond from Freiburg Fraunhofer

Institute (IAF)

Some samples look good:
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Others not so good (different batch):
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Diamonds from Element Six also good (De Beers)
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Backgrounds problem (see earlier discussion):

• The detector integrated dipole steers pairs along the incoming beam

• The luminosity monitor (instrumented mask) must be centered on

the outgoing beam

• Pairs hit luminosity monitor giving a big background in the TPC
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Solenoid field:

3304 ± 704 Hits/BX

Solenoid+DID field:

18145 ± 2518 Hits/BX

Larger opening in luminosity Moni-

tor + Solenoid+DID field:

10861 ± 1840 Hits

FCAL Tel-Aviv University 35 19 Sept 05 – David Strom – UO



Comparison of BeamCal performance at Different ILC Designs
Vladimir Drugakov NC PHEP, Minsk / LAL, Orsay

Effect on crossing angles on veto performance:

hea d- on X- a ngl e

• efficiency calculation: per ring instead of per cell
⇒smaller statistical error
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Results

Hea d- On

X- a ngl e

Geant 4 – Fake rate 5% ?
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Important issues for SiD to address:

• How much can the electron tagging be improved if the direction of

the missing pt is restricted?

• What will the false tag rate from Bhabhas be?

⇒ FCAL claims this will be a ∼ 10% effect in the crossing angle

geometry.

⇒ Radiative Bhabhas will be important.

• How does the anti-DiD affect the tagging efficiency? Would it be

possible to run with a crossing angle and a low background in order

to get a better tagging efficiency for the the SUSY searches?
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