

An LSO/LYSO Crystal Calorimeter & Jet Measurement for the ILC

Ren-Yuan Zhu

California Institute of Technology

October 13, 2005

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

Why a Crystal Calorimeter

- Photons and electrons are fundamental particles in the SM and for new physics.
- Performance of a crystal calorimeter is well understood:
 - The best possible energy resolution, good position and photon angular resolution;
 - Good e/photon identification and reconstruction efficiency;
 - Good missing energy resolutions;
 - Good jet mass resolution.

• Precision e/γ : physics discovery potential.

Physics in Crystal Calorimeters

Charmonium System Observed Through Inclusive Photons

Higgs Searches at LHC

 $H \to \gamma \gamma$

Single & Multi-Photons Physics

Physics in Crystal Calorimeter

SUSY Breaking with Gravitino

$$\chi_{c1} \to J/\psi\gamma$$

0

0.2

0.4

0.6

 $M(I^+ \Gamma \gamma) - M(I^+ \Gamma)$ (GeV)

0.8

Number of events / 11.5 MeV 5 01 01 01

0

0.2

0.4

12

0.8

0.6

 E_v / E_{Beam}

KTeV Csl Position Resolution

Sub mm position resolution at high energies. L3 BGO & CMS PWO: 0.3 mm.

BaBar CsI(TI) Resolution

A crystal calorimeter at low energies

Good light yield of Csl(Tl) provides excellent energy resolution at low energies

L3 BGO Resolution

2

Crystal Density: Radiation Length

1.5 X₀ Cubic

Full Size Samples *BaBar* Csl(Tl): 16 X₀ L3 BGO: 22 X₀ CMS PWO(Y): 25 X₀

BaF₂ Csl CeF₃ BGO PbWO₄ 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 **BaBar Csl(Tl)** L3 BGO CMS PWO(Y)

Crystal Speed: Decay Time

Summary of Crystals for HEP

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refracti I SO/I VSO is a unique crystal with 85								
Hygros LOO/LISO IS a UNIQUE CIYSTAI WITH								
Lumine (at peak high	light	out	put	& fa	ast d	ecay	y tim	e ⁴⁰
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60
			6	0.9		10		
Light Yield ^{b,c} (%)	100	45	5.6	21	13	0.1	75	30
			2.3	2.7		0.6		
d(LY)/dT [♭] (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	~0	-0.1
				~0				
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PANDA? (BTeV)	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

LSO/LYSO Mass Production

CTI: LSO

Additional Capability: SIPAT @ Sichuan, China

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

$Φ80 \times 70$ $Φ80 \times 120$ Large size LSO (Ce:Lu₂SiO₅) crystals are in production

BGO, LSO & LYSO Samples

Cube: 1.7 X1.7 x 1.7 cm (1.5 X_0) Bar: 2.5 x 2.5 x 20 cm (18 X_0)

Experiment

- Without any thermal treatment, all samples went through initial measurement for optical and scintillation properties.
- Properties measured: transmittance, emission and excitation spectra, light output, decay kinetics and light response uniformity.
- Two LYSO long samples went through a series of γ–ray irradiations in steps under 2, 100 and 9k rad/h for 19/24, 19/24 and 22 hours respectively, followed by recovery.
- Light output was measured again for two long LYSO samples two days after ending γ–ray irradiations.

Excitation, Emission & Transmittance

Identical transmittance, emission & excitation spectra Part of emitted light may be self-absorbed in long samples

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

¹³⁷Cs & ²²Na Pulse Height Spectra

Cube and bar samples have 8% and 10% FWHM resolution respectively for ¹³⁷Cs (0.66 MeV) and ²²Na source (0.51 MeV) CPI LYSO bar has double peak because of poor annealing

Light Output & Decay Time

LSO/LYSO Light yield: a factor of 6/100 of BGO/PWO Bar sample has ~50% light of the cube sample LSO/LYSO decay time: 42 ns compared to 300 ns of BGO

Emission Weighted Q.E.

Taking out PMT QE, LO of LSO/LYSO is 4 times BGO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

LSO/LYSO with Si Readout

LSO/LYSO bars can be measured in lab by using one S8664-55 APD of 25 mm² and 0.51 MeV $^{\rm 22}Na$ source

BGO: Longitudinal Uniformity

No longitudinal variation in optical properties

LSO: Longitudinal Uniformity

No longitudinal variation in optical properties Transverse transmittance approaches theoretical limit

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

LYSO: Longitudinal Uniformity

No longitudinal variation in optical properties Poor LT and TT may be caused by poor surface polishing

LYSO: Longitudinal Uniformity

No longitudinal variation in optical properties.

TT approaches theoretical limit, LT shows an absorption band peaked at 580 nm: no effect on emission

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

BGO Light Response Uniformity A slight negative slope for both end coupled to

the PMT indicating a good longitudinal uniformity

LSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

LYSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

LYSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

Possible Origin of Non-Uniformity

C. Melcher: LO in LSO is a function of Ce concentration B. Chai: LO in LYSO is a function of atomic fraction of Yttrium

Caltech y-ray Irradiation Facilities

Open 50 curie Co-60 provides 2 & 100 rad/h

Closed 2,000 curie Cs-137 provides 9k rad/h with 5% uniformity

LYSO Excitation/Emission

No variation in emission & excitation

Transmittance Under 2 rad/h

An initial increase under 2 rad/h (need thermal annealing?) No further variation observed under 2 rad/h

Transmittance Under 100 rad/h

Some indication on initial decrease under 100 rad/h No further variation observed under 100 rad/h

Transmittance Under 9 krad/h Small variation observed under 9 krad/h

LYSO Longitudinal Transmittance

1991 TUTE OF THE OF THE

LYSO Transmittance Damage

LT @ 430 nm shows 6 and 3% increase under 2 rad/h, followed by 6 and 5% degradation under 9 krad/h for CPI and SG samples respectively

Radiation Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

Radiation Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2 h observed

γ-ray Induced Readout Noise

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ).

Radiation Damage in LYSO Damages in LRU and LO is small after γ -ray irradiations of 22 h at 9,000 rad/h

Radiation Damage in LYSO

Damage effect in LRU and LO is small after 22 h γ -ray irradiations at 9,000 rad/h: better than PWO

CMS PWO Resolution

LSO/LYSO ECAL Performance

 A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 $\%/\sqrt{E} \oplus 0.5 \% \oplus .002/E$

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to the CMS PWO ECAL.
- No degradation if ILC energy increases.

Summary: LSO/LYSO ECAL

- Ce doped LSO & LYSO crystals have fast (42 ns) and high (4 X BGO) light output. The light output of 2.5 x 2.5 x 20 cm LSO and LYSO samples, excited by 0.51 MeV γ–ray, can be readout by single APD of 25 mm².
- LSO/LYSO has good radiation hardness. The radiation induced phosphorescence in 2.5 x 2.5 x 20 cm LYSO causes ~1 MeV noise @ 500 rad/h.
- An LSO/LYSO crystal calorimeter will provide excellent energy resolution even the beam energy increases, and will produce rich physics with precision electrons and photons at the ILC.

Jet Measurement: Using Tracker

- Jet energy is not well measured by calorimeter,
 e.g. ZEUS calorimeter.
- Energy of isolated charged cluster may be **replaced** by better measured tracker momentum.

• For overlapping clusters in jets, one has to **subtract** average calorimeter response, leading to **30%** improvement.

Stochastic Term "a" in Jet Resolution

	L3	CDF	ZEUS
Calorimeter	88%	83%	50%
Using Tracker	60%	64%	35%??
4C Fit	23%		

Jet Energy Measurement

$$E_{jet} = \sum_{i=1}^{n} E_i$$

Assuming calorimeter resolution:

$$\frac{\delta E_i}{E_i} = \frac{a}{\sqrt{E_i}} \oplus b$$

Neglecting the constant term b,

$$\frac{\delta E_{jet}}{E_{jet}} = \frac{a}{\sqrt{E_{jet}}}$$

Jet-Jet Mass Measurement

$$M = 2\sqrt{E_1 E_2} \sin\frac{\theta}{2}$$

$$\frac{\delta M}{M} = \frac{1}{2} \sqrt{\left(\frac{\delta E_1}{E_1}\right)^2 + \left(\frac{\delta E_2}{E_2}\right)^2 + \left(ctg\frac{\theta}{2}\delta\theta\right)^2}$$

If $\theta = \pi$ and $E_1 = E_2$,
$$\frac{\delta M}{E_1} = \frac{a}{E_1}$$

 \sqrt{M}

M

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

L3 Jet Mass Resolution: Z->qq

 Measured jet mass resolution: 88%/√E Using tracker momentum for charged particles: 60%/√E 30% improvement since calculated energies was subtracted.

ALEPH: Jet Mass Resolution: **Z->qq**γ

$\sigma(E)=(0.59+-0.03)\sqrt{E+(0.6+-0.3)}$ GeV: 6.3 GeV @ Z

CDF Jet Energy Resolution

Photon + Jets by CDF, using shower maximum (particle ID) and tracker: 25% improvement.

Proceedings, Jeju ILC Workshop (2002)

LCD Study Group Meeting, Ren-yuan Zhu, Caltech

"Theoretical Limit" of the PFA?

V. Morgunov, Paper in Calor2002 Proceedings

 E_{jet} consists, in average, 30% γ , 60% charged hadron (c.h.) and 10% neutral hadron (n.h.) Assuming calorimeter resolutions:

$$\frac{\delta E_{\gamma}}{E_{\gamma}} = \frac{11\%}{\sqrt{E_{\gamma}}}$$
 and

$$\frac{\delta E_{n.h}}{E_{n.h}} = \frac{40\%}{\sqrt{E_{n.h}}}.$$

Assuming 100% charged track replacement,

$$\frac{\delta E_{c.h}}{E_{c.h}} = 10^{-4} E_{c.h},$$

which is negligible, modern energy flow has

$$\frac{\delta E_{jet}}{E_{jet}} = \frac{\sqrt{0.00363 + 0.016}}{\sqrt{E_{jet}}} = \frac{14\%}{\sqrt{E_{jet}}}.$$

Comments:

• 100% charged track replacement is impossible because of shower overlap.

 Additional uncertainty due to QCD physics and jet definition.

• Particle ID will be worse when jet energy increases.

Jet Mass Resolution in Hadron Collider

D. Green, Paper in Calor2002 Proceedings

 Monte Carlo studies identify the elements contributing to the mass error. Quote low P_T, Z -> JJ. dM/M ~ 13% without FSR.

FSR is the biggest effect. Underlying event is the second largest error (if cone R ~ 0.7). Calorimeter resolution is a minor effect.

Summary: Jet Measurement

- Using tracker improves jet energy resolution by 30%.
 60% stochastic term has been achieved for all detectors at LEP. With 50% jet energy resolution can the ZEUS calorimeter do 35% without PFA?
- In addition to detector leakage, jet measurement is also limited by physics (QCD and fragmentation) and algorithm (jet definition).
- The **PFA** is not free from above limitations, and its performance can not be parameterized as

a
$$\%/\sqrt{E}\oplus$$
 b $\%$

since it degrades when jet energy increases.

• 23% jet mass resolution was achieved at LEP by using constrained fit, which is free from all limitations.