The stop co-annihilation region at the ILC

A. Freitas
Fermilab

in collaboration with
C. Milstène, M. Carena
Fermilab

A. Finch, A. Sopczak
Lancaster

H. Nowak
DESY

1. Introduction
2. Detecting light stops
3. Parameter determination
4. Dark matter prediction
Introduction
Electroweak Baryogenesis

Sakharov conditions:

- Baryon number violation
 - In Standard Model and extensions through non-perturbative sphaleron processes

- C and CP violation
 - CP violation in Standard Model through CKM phase not sufficient to explain baryon asymmetry $\eta_{BBN} \sim 6 \times 10^{-10}$

- Non-equilibrium
 - Strongly first order electroweak phase transition necessary
 \[
 \frac{v(T_c)}{T_c} > 1
 \]

 - In Standard Model: $\frac{v(T_c)}{T_c} \approx \frac{g^2}{4\pi\lambda} \text{ with } \lambda \propto \frac{M_H^2}{v^2}$

 \rightarrow not fulfilled for $M_H \gtrsim 40$ GeV
Electroweak Baryogenesis and Supersymmetry

EW baryogenesis:
- new boson degrees of freedom with strong Higgs coupling
- new sources for CP violation

Supersymmetry provides natural framework for EW baryogenesis

Carena, Quirós, Wagner ’96

Higgs potential modified by scalar top (stop) \tilde{t}_1:

Each stop has six degrees of freedom (3 color, 2 charge),
coupling $\mathcal{O}(1)$ to Higgs

$$\frac{v(T_C)}{T_C} \approx \frac{g^2 + 2y_{\tilde{t}}^2}{4\pi \lambda}$$

- Higgs masses up to 120 GeV
- Lightest stop must have mass below top quark
Electroweak Baryogenesis and CP violation

CP violating source needed to generate chiral charge asymmetry

→ particle currents coupling to the Higgs background

In Standard Model:
CP-violating CKM processes suppressed by Yukawa couplings m_q^2/M_W^2

Supersymmetry: Carena, Quirós, Riotto, Vilja, Wagner ’97
Additional contribution from stop and chargino currents

\[\alpha \text{Im}(A_t \mu) \quad \alpha \text{Im}(M_2 \mu) \]

Higgs bound $M_{h_0} \gtrsim 114$ GeV: one stop eigen-state heavy

⇒ Charginos are dominant source if they are light

Phase can be rotated into μ parameter only
Dark matter

Evidence for dark matter from many sources:

- Rotation curves of galaxies
- Supernovae Ia redshift
- CMB
- Gravitational lensing
- Large scale structure

\(\sim 85\%\) of matter in universe is \textcolor{red}{dark}\.
Dark matter and Supersymmetry

Dark matter has to be stable and weakly interacting

Supersymmetry has natural dark matter candidate:

- lightest neutralino $\tilde{\chi}^0_1$ stable for R-parity conservation

- Dark matter particles freeze out when expanding universe cools
- After freeze-out dark matter particles annihilate
- Annihilation cross-section

$$\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow X$$

suppressed due to chirality conversation

→ Too large relic density in many SUSY scenarios
Co-annihilation

Mass of SUSY particle \tilde{X} close to lightest neutralino $\tilde{\chi}_1^0$

- Freeze-out of \tilde{X} and $\tilde{\chi}_1^0$ at roughly same temperature
- Annihilation in parallel (co-annihilation)
- Reduction of total dark matter density

In framework of EW baryogenesis:
Co-annihilation with scalar top
Typical parameter regions

Carena, Balázs, Wagner ’04

Green: Relic density consistent with WMAP

Co-annihilation for
\[\Delta m \lesssim 30 \text{ GeV} \]

Difficult for searches at Tevatron

LHC will have similar difficulties

(possible additional channel: \(pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{t}_1 \tilde{t}_1 \tilde{t}\tilde{t} \))
Detecting light stops
Light stop signature

Dominant decay for small mass differences $\Delta m = m_{\tilde{t}_1} - m_{\tilde{\chi}^0_1}$: $\tilde{t}_1 \rightarrow c \tilde{\chi}^0_1$

Assume 100% branching ratio for $\tilde{t}_1 \rightarrow c \tilde{\chi}^0_1$

Signature at linear collider: $e^+e^- \rightarrow \tilde{t}_1 \tilde{t}^*_1 \rightarrow c \bar{c} \tilde{\chi}^0_1 \tilde{\chi}^0_1$

Two (soft) charm jets plus missing energy

Discrimination from background requires detector simulation

- Event generation with Pythia
- Detector effects with fast simulation
- Include beamstrahlung with Circe

Generate SM background from various sources

Assume $\mathcal{L} = 500 \text{ fb}^{-1}$ at $\sqrt{s} = 500 \text{ GeV}$.
Signal and Background

<table>
<thead>
<tr>
<th>process</th>
<th>cross-section [pb]</th>
<th>$P(e^-)/P(e^+)$ = 0/0</th>
<th>-80%/+60%</th>
<th>+80%/-60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{t}_1 \tilde{t}1$, $m{\tilde{t}_1}$ = 120 GeV</td>
<td>0.115</td>
<td>0.153</td>
<td>0.187</td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$ = 140 GeV</td>
<td>0.093</td>
<td>0.124</td>
<td>0.151</td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$ = 180 GeV</td>
<td>0.049</td>
<td>0.065</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$ = 220 GeV</td>
<td>0.015</td>
<td>0.021</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>W^+W^-</td>
<td>8.55</td>
<td>24.54</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>0.49</td>
<td>1.02</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>$W e\nu$</td>
<td>6.14</td>
<td>10.57</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>eeZ</td>
<td>7.51</td>
<td>8.49</td>
<td>6.23</td>
<td></td>
</tr>
<tr>
<td>$q\bar{q}$, $q \neq t$</td>
<td>13.14</td>
<td>25.35</td>
<td>14.85</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.55</td>
<td>1.13</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>$\gamma\gamma$, $p_t > 5$ GeV</td>
<td>936</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$- = L$
$+ = R$

$\sin \theta_{\tilde{t}} = 0.5$

Large Standard Model backgrounds!
Reduction of background

Preselection:

1. $4 < N_{\text{chargedtracks}} < 50$
2. $p_t > 5$ GeV
3. $|\cos \theta_{\text{Thrust}} < 0.8|$
4. $|p_{\text{long,tot}}/p_{\text{tot}}| < 0.9$
5. $E_{\text{vis}} < 0.75 \sqrt{s}$
6. $m_{\text{inv}} < 200$ GeV

Most backgrounds (color) strongly reduced

Signal (black) to $\sim 70\%$
Effect of preselection for various signal parameters

for $m_{\tilde{t}_1} = 140$, 180, 220 GeV

and $\Delta m = 20$, 40, 80 GeV

Signal efficiencies after pre-selection 65–75%
Reduction of background

Preselection:
1. $4 < N_{\text{charged tracks}} < 50$
2. $p_t > 5$ GeV
3. $|\cos \theta_{\text{Thrust}}| < 0.8$
4. $|p_{\text{long,tot}}/p_{\text{tot}}| < 0.9$
5. $E_{\text{vis}} < 0.75 \sqrt{s}$
6. $m_{\text{inv}} < 200$ GeV

Selection:
1. $N_{\text{jets}} = 2$
 (Durham $y_{\text{cut}} = 0.003$)
2. $E_{\text{vis}} < 0.4 \sqrt{s}$
3. $\cos \phi_{\text{aco}} > -0.9$
4. $|\cos \theta_{\text{Thrust}}| < 0.7$
5. $p_t > 12$ GeV
6. $3500 \text{ GeV}^2 < m_{\text{inv}}^2 < 8000 \text{ GeV}^2$, c-tagging
Remaining background levels

<table>
<thead>
<tr>
<th>Background</th>
<th>N_{evt} generated</th>
<th>N_{evt} after selection</th>
<th>scaled to 500 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+W^-</td>
<td>210,000</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>ZZ</td>
<td>30,000</td>
<td>30</td>
<td>257</td>
</tr>
<tr>
<td>$W\nu\nu$</td>
<td>210,000</td>
<td>624</td>
<td>5044</td>
</tr>
<tr>
<td>eeZ</td>
<td>210,000</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>$q\bar{q}$, $q \neq t$</td>
<td>350,000</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>180,000</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>8,000,000</td>
<td>0</td>
<td>< 164</td>
</tr>
</tbody>
</table>

Largest remaining background from $e^+e^- \rightarrow W^\pm e^\mp \nu$

Distributions in thrust, acoplanarity, jet angles, etc. similar to signal

Only cut in window around $m_{\text{inv}} \sim M_W$ and c-tagging effective
Signal efficiency

<table>
<thead>
<tr>
<th>Δm</th>
<th>$m_{\tilde{t}_1} = 120$ GeV</th>
<th>140 GeV</th>
<th>180 GeV</th>
<th>220 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 GeV</td>
<td>10%</td>
<td>15%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>40 GeV</td>
<td>10%</td>
<td>20%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>20 GeV</td>
<td>17%</td>
<td>21%</td>
<td>28%</td>
<td>35%</td>
</tr>
<tr>
<td>10 GeV</td>
<td>19%</td>
<td>20%</td>
<td>19%</td>
<td>35%</td>
</tr>
<tr>
<td>5 GeV</td>
<td>2.5%</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Typical signal event number remaining after selectron for 500 fb$^{-1}$, depending on $m_{\tilde{t}_1}$ and $\theta_{\tilde{t}}$: $N_{\text{sig}} \sim \mathcal{O}(10^3) - \mathcal{O}(10^4)$

→ same order as remaining background

Signal efficiency deteriorates for very small Δm
Stop discovery reach at linear collider

From simulations:
Background numbers B and
signal efficiencies ϵ
with theor. cross-section σ
yields signal number $S = \epsilon\sigma$

Green region: $\frac{S}{\sqrt{S + B}} > 5$

Light green:
decay $t \to \tilde{t}_1\tilde{\chi}_1^0$ open
(not yet studied)

Detection of light stops
possible for $\Delta m \sim \mathcal{O}(5\text{GeV})$

Cover complete
co-annihilation region
Parameter determination
Sample parameter point

Point with light stop, gauginos, selectron and CP violation
→ Use existing studies where possible

\[M_1 = 112.6 \text{ GeV} \quad M_{u3}^2 = -992 \text{ GeV}^2 \]
\[M_2 = 225 \text{ GeV} \quad M_{q3} = 4200 \text{ GeV} \]
\[|\mu| = 320 \text{ GeV} \quad A_t = -1050 \text{ GeV} \]
\[\phi_\mu = 0.2 \quad \tan \beta = 5 \]

1st/2nd generation squarks heavy

→ Consistent with ϵ and n EDM, m_{h_0} bound, baryogenesis

Sparticle masses:
\[m_{\tilde{\chi}_1^0} = 107.2 \text{ GeV} \quad m_{\tilde{t}_1} = 122.5 \text{ GeV} \quad \cos \theta_{\tilde{t}} = 0.0105 \]
\[\Omega_{\text{CDM}} h^2 \approx 0.112 \]
Stop parameters

Use $e^+ e^- \rightarrow \tilde{t}_1 \tilde{t}_1^*$ cross-section measurements for two different beam polarizations:

$P(e^-)/P(e^+) = -80% / +60%$

$+80% / -60%$

$\mathcal{L} = 250 \text{ fb}^{-1}$ each

Systematic errors:

- $\delta m_{\tilde{\chi}_1^0} = 0.1 \text{ GeV}$
- $\delta P/P = 0.5%$
- backgr. $\delta B/B = 0.3%$
- $\delta \mathcal{L}/\mathcal{L} = 5 \times 10^{-4}$
- \tilde{t}_1 hadroniz./fragment.: $\sim 1%$
- charm tagging/fragm.: $0.5%$
- detector calibration: $0.5%$
- beamstrahlung

Result: $m_{\tilde{t}_1} = 122.5 \pm 1.0 \text{ GeV}$

$|\cos \theta_{\tilde{t}}| < 0.074$

$\Rightarrow |\sin \theta_{\tilde{t}}| > 0.9972$
Chargino/Neutralino parameters

Mass measurements:

- Heavy 1st/2nd generation squarks
 → Neutralino masses from squark cascades at LHC difficult

- Lightest neutralino $\tilde{\chi}^0_1$ mass from selectron and other decays at ILC
 $\rightarrow \delta m_{\tilde{\chi}^0_1} = 0.11$ GeV

- Other neutralino/chargino masses from ILC threshold scans
 LHC/ILC report '04

Most studies performed in SPS1a scenario
→ Scale errors with different cross-sections in our scenario

<table>
<thead>
<tr>
<th>$\tilde{\chi}^0_1$</th>
<th>$\tilde{\chi}^0_2$</th>
<th>$\tilde{\chi}^0_3$</th>
<th>$\tilde{\chi}^\pm_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δm</td>
<td>0.11</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.12 GeV</td>
<td></td>
</tr>
</tbody>
</table>
Cross-section measurements

\[e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^- \quad P(e^-)/P(e^+) = -80\%/+60\% \text{ and } +80\%/-60\% \]

at \(\sqrt{s} = 500 \text{ GeV} \)

Note: Light stop opens decay \(\tilde{\chi}_1^+ \rightarrow \tilde{t}_1\bar{b} \)
with experimentally unknown BR

→ Use only cross-section ratios for \(\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^-) \)

Systematic errors in cross-sections:

- chargino/neutralino masses
- selectron/sneutrino masses in t-channel
- \(\delta P/P = 0.5\% \)

Experimental efficiency extrapolated from analysis for \(e^+e^- \rightarrow \tilde{\chi}_1^0\tilde{\chi}_2^0 \)

M. Ball '02
Chargino/Neutralino comprehensive analysis

Use χ^2 fit to extract fundamental SUSY parameters:

\[
M_1 = 112.6 \pm 0.2 \text{ GeV} \quad |\phi_\mu| < 1.0 \\
M_2 = 225.0 \pm 0.7 \text{ GeV} \quad \tan \beta = 5^{+0.5}_{-2.6} \\
|\mu| = 320.0 \pm 3.3 \text{ GeV}
\]

Large correlation between \(\tan \beta \) and \(\phi_\mu \)

→ Not problematic for dark matter determination
Dark matter prediction
Computation of Ω_{CDM} from collider results

Use program by D. Morrissey for calculating Ω_{CDM}

Balázs, Carena, Menon, Morrissey, Wagner ’04

Use inputs and propagate errors from
- Stop sector
- Chargino/neutralino sector
- Higgs sector

Account for correlations by using χ^2 fit

1σ constraints from ILC/LHC measurements:
$0.086 < \Omega_{\text{CDM}} h^2 < 0.143$

dominated by error on $m_{\tilde{t}_1}$

WMAP/SDSS (95% CL):
$0.095 < \Omega_{\text{CDM}} h^2 < 0.129$
Different SUSY scenarios

ILC measurements could lead to different conclusions:

- Agreement with cosmological observations (A,C,E)
- SUSY predicts too little DM (B) → other sources?
- SUSY predicts too much DM (D,E) → constraints on parameters, revision of model of universe?
Conclusions

- ILC can cover complete stop-neutralino co-annihilation scenario
 Can explore mass differences down to
 \[\Delta m = m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \sim \mathcal{O}(5 \text{ GeV}) \]

- Prediction of \(\Omega_{\text{CDM}} \) in MSSM from collider measurements with precision comparable to cosmological measurements

Future avenues:

- Further refinements of the experimental analysis
- Analyze different dark matter scenarios
- Investigate effect of radiative corrections
Maybe at one point we will be able to figure out what this is
C-tagging – Concept

Vertex identification followed by a Neural Network optimization

Vertex identification:

As a maximum in track overlapping (product of probability density tubes defined using the track parameters) 3 cases:

1. Only primary vertex
2. 1 secondary vertex
3. >1 secondary vertex

Neural Network (NN):

Data for training: 255000 $\tilde{t}_1\tilde{t}_1^*$ events, $m_{\tilde{t}_1} = 120–220$ GeV, $\Delta m = 5, 10, 20$ GeV
240000 $W_{\ell\nu}$ events, the most resilient background
C-tagging – Neural Network Input

Vertex Case 1: NN input variables:
- impact parameters and their significance (impact parameter / error) of 2 most significant tracks
- track momenta
- joint probability in r-ϕ plane and z direction

Cases 2/3: NN input variables: **all of case 1 plus:**
- decay length and its significance of secondary vertex
- number/momenta of tracks associated to 2$^{\text{nd}}$ vertex
- p_t-corrected mass of 2$^{\text{nd}}$ vertex
 (corrected for neutral hadrons and ν’s), p_t distribution relative 2$^{\text{nd}}$ vertex direction