SiD Cost Estimating

M. Breidenbach 2 June 2005

Issues Numbers

Issues

- Accounting Rules:
 - US versus European accounting:
 - US convention is to cost all technical labor -
 - Engineering
 - Technicians
 - Trades
 - But not faculty, physicists, students
 - European convention (appears to) cost none of the labor.
 - European system makes sense if adequate labor is permamnetly employed by the participating universities and labs - and conversely!!
 - Both systems cost full M&S.

Base and Contingency

- US convention is to generate base cost at ~66% confidence level, with explicit contingency that should take estimate to ~high 90's% confidence. (Confidence that project can be completed satisfactorily for the cost)
- European "style" appears to be less overt contingency, with more "hidden" in the base.

Other Costs

- Preliminary Engineering is it a cost?
 - Conceptual design stage may well be considered R&D as is generic detector R&D. The R&D is usually not included...
 - But there are substantial costs in all stages of development of complex systems:
 - Preliminary Engineering (???)
 - R&D
 - Design & Prototype
 - Final Engineering (Yes)
 - Production Engineering
 - Installation & Commissioning
 - Production (Yes)

Escalation

- We all like to estimate in this year's \$\$.
- But inflation is real and we will be judged by the sum of then year \$\$ that we spend.
- Particularly important because there will be a noticable Δt between now and construction start.
- Assuming inflation at 3%/year (optimistic?) and construction start in 2011 (optimistic?), escalation is the ~the single largest cost!

Working Conclusions

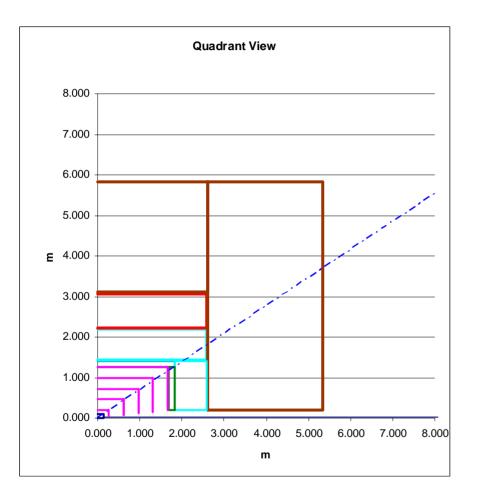
- All technical labor included
- Contingency is explicit
- All engineering is included
- Escalation is included
- Comparison among detectors requires agreement on the accounting issues!

Uniform Unit Costs

- The detectors have significant technology overlap-
 - Superconducting solenoids
 - Si detectors
 - Fe flux returns
 - W calorimeter radiator
 - Large area detectors for HCal and muon systems
 - Etc
- We need a mechanism to develop a uniform (although not necessarily correct) basis for estimating unit costs for significant technologies...if inter-detector comparisons are to mean anything.
- Snowmass???

SiD Methodology

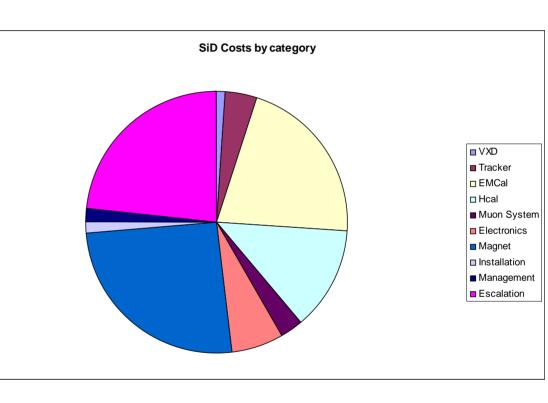
- A Work Breakdown Structure (WBS) has been developed:
 - 1.1 SiD
 - 1.1.1 VXD
 - 1.1.2 Tracking
 - 1.1.3 Calorimetry
 - 1.1.3.1 EMCal
 - 1.1.3.2 HCal
 - 1.1.4 Muon System
 - 1.1.5 Electronics
 - 1.1.6 Magnet
 - 1.1.7 Installation
 - 1.1.8 Management


Fixed & Differential Costs

- In general, each subsystem has:
 - Fixed costs, such as engineering, assembly tooling, etc which scale weakly (or not at all) with reasonable variation of the detector parameters.
 - The fixed costs have been tabulated in the SLAC program WBS.
 - Labor is based on real SLAC costs with benefits, but no indirects.
 - Contingencies are estimated for each item.
 - Differential costs are those that scale with detector parameters, such as Tracker radius, HCal gap thickness, B, etc.
 - A self consistent SiD model is generated by the EXCEL program Parametric_Detectors_Test (MB).
 - Quantities of various materials and associated labor are estimated and multiplied by unit costs.
 - Contingency is applied as fixed fraction.

Caveats

- The estimates have *not* been reviewed.
- Every time the estimates have been re-visited, errors have been found. There is *no* reason to believe the errors are gone.
- The unit costs have *no* documented basis there are no catalogs, bids, etc. (but there is some experience).


SiD Cost baseline

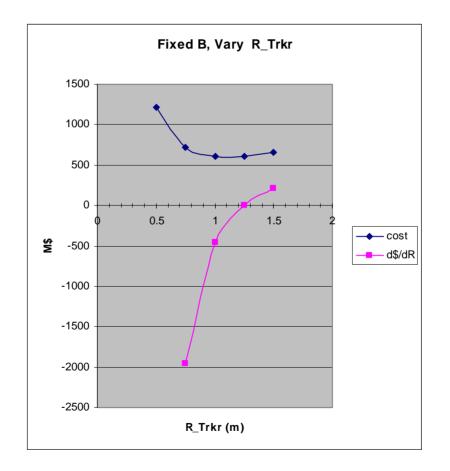
Rtracker = 1.25 m $Cos(\Theta_{barrel}) = 0.8$ B = 5 T Cal radiators are W Hcal 4A, 2X₀ (7mm)

The Answer

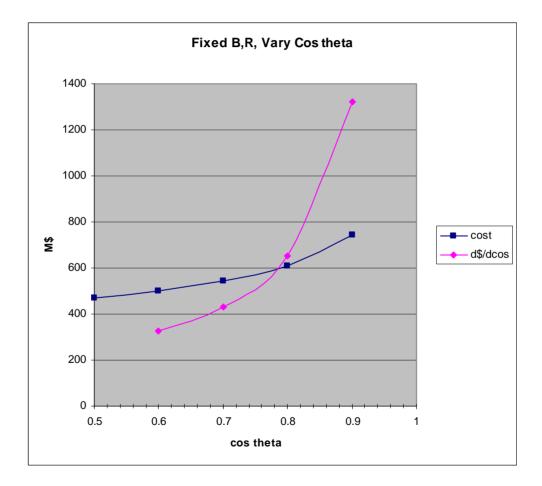
Summary	
VXD	\$6,000,000
Tracker	\$24,321,293
EMCal	\$127,950,922
Hcal	\$78,326,882
Muon System	\$18,042,628
Electronics	\$37,510,256
Magnet	\$155,790,165
Installation	\$9,563,553
Management	\$9,368,695
Escalation	\$142,290,795.3
Total	\$609,165,188

	Cost Estimation										
		Differential Costs							Fixed Costs		
	item	n unit	unit cost		subsystem total	associated unit labor	labor cost	total labor	M&S	M&S Contingency	Labor
1.1.1	VXD								\$4,000,000	\$2,000,000	
					A 0 770 470			004400		0 4 405 000	0 0 004 400
1.1.2	Tracker Trkr Si	55.6 m^2	67600	\$3,757,209	\$6,779,178			834400	\$3,940,000	\$1,485,000	\$6,624,400
	Trkr ROC's	5788.0 ea	100	\$578,800		100	\$578,800				
	Trkr Electronic Clusters	455.5 ea	580	\$264,208			•••••				
	Trkr Si EC	24.5 m^2	67600	\$1,659,154							
	Trkr EC ROC's	2556.0 ea	100	\$255,600		100	\$255,600				
	Trkr Electronics Clusters EC	455.5 ea	580	\$264,208							
1.1.3.1	EMCal				\$86,571,673			\$8,917,609	\$1,000,000	\$100,000	\$5,224,400
	EM Cal si	912.6 m^2	60000	\$54,757,685							
	Em Cal si endcap	294.1 m^2	60000	\$17,645,729							
	EMCal ROC's	89176.1 ea	100	\$8,917,609		100	\$8,917,609				
	EM Cal W	0.0 kg	0	\$5,250,650							
	EMCal Electronic Clusters	891.8									
1.1.3.2	Hcal				\$54,810,094			\$981,556	\$1,000,000	\$100.000	\$5,222,400
1.1.0.2	Hcal Detectors	3926.2 m^2	450	\$1,766,801	φο 1,010,001	250	\$981,556		¢1,000,000	φ100,000	φ0,2222, 100
	HCAL Rad	4.38E+05 kg	100.0	\$43,782,856			••••				
	HCAL Rad endcap	9.26E+04 kg	100.0	\$9,260,437							
1.1.4	Muon System Muon Chambers	15759 m^2	450	\$7,091,640	\$7,091,640		\$3,939,800	\$3,939,800	\$1,000,000	\$500,000	\$1,970,060
1.1.5	Electronics								\$7,758,400	\$1,654,600	\$21,639,330
1.1.6	Magnet Coil			\$86,126,568	\$110,943,950				\$7,687,500	\$1,860,250	\$5,642,201
	Fe	2.42E+06 kg	3.48	\$8,424,604							
	Fe endcap	3.8E+06 kg	3.48	\$13,155,728							
	Fe additional (1)	9.30E+05 kg	3.48	\$3,237,050							
1.1.7	Installation								\$2,617,800	\$522,320	\$4,746,050
1.1.8	Management								\$921,000	\$171,700	\$6,780,700
	Total Costs(M\$) by category				\$266			\$14.67	\$29.9		\$57.8
	Contingencies by category	25 %			\$266 \$67		Totals:	\$14.67 \$3.67	\$29.9	\$8.4	\$37.8
	Total Base, no contingency	WBS SiD May 05		368.6			า บเสเร.				
	Total Contingency			98.2							
	Total in FYXXXX M\$	2005		466.9							

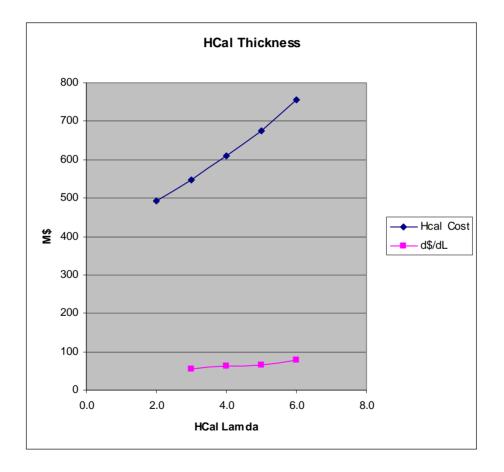
Some analysis

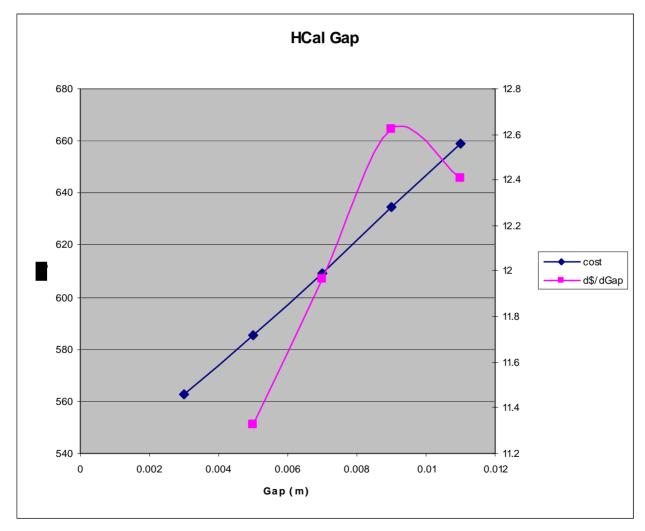

Total Contingency	\$98
Fraction of base=	0.27
Total Labor (contingency)	\$96
Fraction of base =	0.21

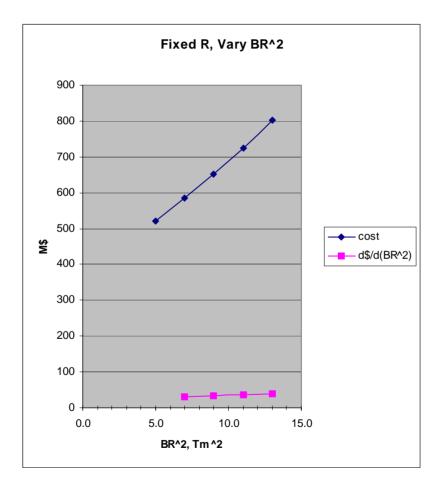
Some Critical Unit Costs

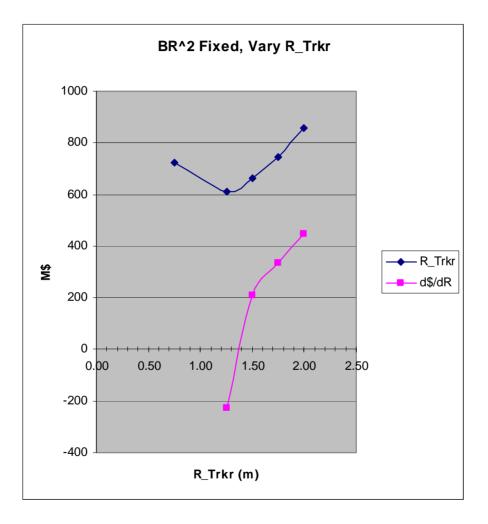

- Si Tracker Detector
- Si EMCal Detector
- Electronics ROC
- HCal W
- Solenoid
- HCal, Muon Detectors
- Magnet Fe

\$6.76/cm² \$6.00/cm2 \$100 +\$100 install \$100/kG 0.81E(MJ)^{0.662}M\$ \$450/m² \$3.48/kG


Variations – R_Trkr


Variations - $Cos(\Theta_{Barrel})$


Variations - HCal Thickness (Interaction lengths)


Variations - HCal Detector Gap

R_{Trkr} fixed, vary BR^2

BR² Fixed, Vary R_{Trkr}

Conclusions

- This estimate is not even version 0.
- The derivatives are probably not wildly wrong.
- Everything is sensitive to the important unit costs.
- A lot more work is needed.
- SiD may well cost $\frac{1}{2}$ of 10% of the ILC!!!