A Digital Hadron Calorimeter with Resistive Plate Chambers

José Repond Argonne National Laboratory

> LCD Study Group Meeting (by phone) February 3, 2005¹

Outline

- I Hadron calorimeter for the ILC detector
- II What are RPCs?
- III Adapting RPCs to calorimetry with fine granularity
- IV The big plan: 1 m³ prototype section
- V Electronic readout system
- VI Collaboration building and proposals
- VII Test beams
- VIII Time scale
- IX Conclusions

I Hadron Calorimeter for the ILC Detector

Particle Flow Algorithms...

Particles in jets	Fraction of energy	Detector	Resolution [σ ²]
Charged	65 %	Tracker	Negligible
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}
Confusion	Required for 30%/√E _{jet}		≤ 0.24² E _{jet}

Requirements on hadron calorimeter and active medium

Good single particle energy resolution (not much worse than 50%/ \sqrt{E}) **Extremely fine granularity** (to separate different components of jets) Inside the B-field (coil (corresponding to ~ 1 λ_I) spoils energy measurement) Fit into gap of no more than 10 mm Low noise Reliable technology (has to last at least 10 years) Recharge time after hit not more than about 0.1 seconds Affordable (whatever that means these days)

Expected rates...

Assume
$$\mathcal{L}_{LC} = 0.5 \times 10^{34} \text{ cm}^2 \text{s}^{-1} = 0.5 \times 10^{-2} \text{ pb}^{-1} \text{s}^{-1}$$

 $\sigma_{1\gamma} (500 \text{ GeV}) = 4 \text{ pb} \rightarrow \text{N/s} = 0.02$ Easy
 $\sigma_{e^+e^- \rightarrow e^+e^{-1}+1^-} = \frac{28\alpha^4}{27\pi \text{m}_1^2} \left(\ln \frac{\text{s}}{\text{m}_e^2}\right)^2 \ln \frac{\text{s}}{\text{m}_1^2}$
From V M Budnev et al.
Phys. Lett. 15(1974) 181-282
 $\sigma_{2\gamma \rightarrow ee} (800 \text{ GeV}) = 34 \text{ mb} \rightarrow \text{N/s} = 170 \times 10^6$ Not an HCAL problem
 $\sigma_{2\gamma \rightarrow \mu\mu} (800 \text{ GeV}) = 473 \text{ nb} \rightarrow \text{N/s} = 2400$ OK
 $\sigma_{e^+e^- \rightarrow e^+e^-h} = \frac{\alpha^4}{18\pi^2 \text{m}_\pi^2} \ln \frac{\text{sm}_\rho^2}{\text{m}_e^2 \text{m}_\pi^2} \ln \frac{\text{sm}_\rho^6}{\text{m}_e^6 \text{m}_\pi^2} \left(\ln \frac{\text{s}}{\text{m}_\pi^2}\right)^2$
 $\sigma_{2\gamma \rightarrow h} (800 \text{ GeV}) = 189 \text{ nb} \rightarrow \text{N/s} = 945$???

PYTHIA simulations

MSTP(14)=10

Mix of VMD, direct and anomalous component

 $\sigma_{2\gamma \to h}$ (800 GeV) = 43.41 nb

???

Used TESLA geometry 4T magnetic field

Particle rates

Beam pipe	24.1 %	<e> = 15.7 GeV</e>			
Endcaps	75.8 %	<e> = 1.53 GeV</e>			
Rate/endcap = 613 Hz 283 Hz (E> 1GeV)					
Barrel	0.06 %	<e> = 5.0 GeV</e>			

II Resistive Plate Chambers

A simple idea...

RPCs in HEP experiments

and Astrophysics

ARGO-YBJ

III Adapting RPCs to Hadron Calorimetry

Things to worry about...

Best design Signal characterization Signal charge measurements Single particle efficiency Noise rate Mechanical stability Optimal gas mixture Hit multiplicity Rate capability Operation in B-field Long term stability Sensitivity to outlyers

Best design...

Chambers built and tested at Argonne

Name	Area [cm ²]	# of gas gaps	# of glass plates	Glass thickness [mm]	Thickness of chamber [mm]	# of Graphite layers	Surface resistivity [ΜΩ/□]	
Air0	20 x 20	2	3	0.85	3.75	2	0.3	
Air1	20 x 20	2	3	1.1	4.50	2	0.2	
Air2	20 x 20	2	3	1.1	4.50	2	1.2	
Air3	20 x 20	1	2	1.1	3.40	2	1.0	
Air4	20 x 20	1	2	1.1	3.40	2	1.0 + 50 <	Default design
Air5	20 x 20	1	2	0.85	2.90	2	1.5 + 2.4	design
Air6	30 x 91	1	2	1.1	3.40	2	1.5 + 2.5	
Air7	20 x 20	1	2	1.1	3.40	1	1.0	K
Air8	20 x 20	1	2	1.1	3.40	0	0	to the
Air9	20 x 20	1	1	1.1	2.30	0	0	L K L

Add ~3.00 mm for front-end readout board and ASIC

Signal Characterization...

Studies with digital scope

Charge and timing characteristics Signals on neighboring pads

Signal Charge Measurements...

Measured with RABBIT system

Avalanche signals

In broad range of charges Analog information ~useless

Streamer signals

Well defined charge Multiple streamers Avalanches always present

Single Particle Efficiency...

Plateau of ~ 1kV, where

Efficiency > 95% Fraction of streamers < few %

Overall efficiency

Close to 100% Loss of efficiency at fishing line

Geometrical Efficiency...

Half width about 1.8 mm

∉ ~ 15% x 2 mm = 30% mm = 100% x 0.30 mm

Spacer Ø is 0.64 mm

Select vertical tracks only

Noise Rate...

Measured with discriminators 64 1 cm² pads

Noise rate

~0.1 Hz per pad

Mechanical Stability...

Deflection in Center

Pressure emulated with H₂O Significant deflections In agreement with calculations Gas pressure < Electric force from HV

Optimal Gas I	Mixture			
Gas	Percentages	Saturated avalanches	Signal sizes	
Ar : IB : SF ₆	$90 \rightarrow 52:8:2 \rightarrow 40$	No ———		
C ₃ F ₈	100	No		6600 6800 7000 7200 7400 7600 7800 8000
Freon : IB : Ar	62 : 8 : 30	Yes	Small	40
Freon : IB : SF ₆	94.5 : 5 : 0.5	Yes	Large	35
	mixture			
Mixt	ures with > 8 % IB	are flammat	ble	

Hit Multiplicity...

Measurements

Using VME – based digital RO system 64 channels

Hit multiplicity

1.6 - 1.7 for efficiency = 95 % 1.4 - 1.5 for efficiency = 90 %

No strong dependence on HV

Rate Capability...

Cosmic Rays and Sources

Efficiency for MIPS

Measurement triggered by scintillation counters

Measurement Self-triggered

Problems with this method

- Rates from source not uniform over area
- Efficiency drop affects rate measurement
- Source provides e⁻, not MIPs
- Cosmic ray trigger contaminated

Rate capability at least 50 Hz/cm²

Operation in B-Field...

Tests done by ITEP group (Ammasov et al.)

Using DESY 5T magnet

Test with 3 chambers (2 trigger, 1 efficiency)

Measurements with cosmic rays

- Magnet off
- Magnet on, angle between B and E fields = 90°
- Magnet on, angle between B and E fields = 45 °

No effect from B-Field observed

Long Term Stability...

Investigated by OPERA, ALICE...

Efficiency and timing resolution stable with integrated charge

Glass resistivity stable with integrated charge

Own experience: no changes observed in over two years of operation

Comparison of RPCs with Scintillator

ANL studies based on GEANT4

Studies of lateral shower sizes with 1 cm² readout pad sizes

EM showers narrower in RPCs Hardonic showers narrower in RPCs

> Clear advantage for separating components of hadronic jets (PFA)

IV The Big Plan

Prototype section

1 m³ (to contain most of hadronic showers)
40 layers with 20 mm steel plates as absorber
Lateral readout segmentation: 1 cm²
Longitudinal readout segmentation: layer-by-layer
Gas Electron Multipliers (GEMs) and Resistive Plate Chambers (RPCs) evaluated

Motivation for construction and beam tests

Validate RPC approach (technique and physics) Validate concept of the electronic readout Measure hadronic showers with unprecedented resolution Validate MC simulation of hadronic showers Compare with results from Analog HCAL

Comparison of hadron shower simulation codes by G Mavromanolakis

Mechanical structure...

Conceptual design by K Gadow (DESY)

One mechanical structure for AHCAL and DHCALs Absorber plates 16 mm of (regular) steel 4 mm steel plates as support of active medium Option to increase gap for active medium to up to 10 mm Possibility to change height, lateral position, angles

> As part of the CALICE project

V The Electronic Readout System

40 layers à 1 m²

1 cm² readout pads

400,000 readout channels

Real challenge Cheap (~ 1\$/channel) Low cross-talk, noise...

Conceptual design of system

I Front-end ASIC

II Data concentrator

III VME data collection

IV Trigger and timing system

Front-end ASIC...

64 inputs with choice of input gains RPCs (streamer and avalanche), GEMs... Triggerless or triggered operation 100 ns clock cycle Output: hit pattern and time stamp

American Linear Collider Physics Group

Conceptual Design of the Amplifier/Discriminator/Timestamp (ADT) ASIC

Gary Drake, José Repond, Dave Underwood, Lei Xia Argonne National Laboratory

> Charlie Nelson Fermilab

Version 1.20 February 23, 2004

ASIC performance specified in 41 page document

Front-end boards...

Data concentrators...

Custom

Chip

Readout

Ground Power Shield

⊐ Shield Sig Return Sig Pads

2 Routing Lavers

8 layer boards Each housing 24 ASICs Overall thickness < 3 mm Contains both analog and digital signals

> Readout 12 ASICs Located on sides of section Essentially FPGAs

Data collector...

Initiated design effort Pursuing two possibilities

a) PCI links with switchb) VME-based system

Component	#/chamber	#/plane	Total
Planes	-	1	40
Chambers	1	3	120
DCAL ASIC	48	144	5760
Front-end boards	2	6	240
Data concentrators	4	12	480
Data collectors	-	1	40
VEM crates	-	-	2

VI Collaboration Building and Proposals

List of subtasks for the electronic readout system of the DHCAL

1	Overall engineering and design	ANL
2	ASIC engineering and design	FNAL
3	ASIC testing	ANL
	Test board design	FNAL
	Test board production	
	Measurements	
4	Front-end PC board engineering and design	ANL
	prototyping and testing	FNAL
5	Data concentrator engineering and design	Chicago
	prototyping and testing	
6	Data collector engineering and design	ANL
	prototyping and testing	Boston
7	DAQ system: VME processor and programming	Washington
8	Timing and trigger system engineering and design	UTA
	prototyping and testing	
9	High voltage system	lowa
10	Gas mixing and distribution system	lowa

Cost estimate (M&S only)...

Item	Cost
Resistive Plate Chambers	\$20,000
Front-End ASIC	\$225,000
Front-end Readout Boards	\$50,000
Data Concentrator Boards	\$85,000
Data Collector System	\$60,000
Power Supplies, Optical Fibers, HV	\$60,000

Grand total

\$500,000 + 50% contingency

Recent & Future Proposals to Funding Agencies...

Agency	Institutes	Request	Award
LDRD (ANL directorate) used for manpower mostly	ANL	300,000	181,500
LCRD	ANL, Boston, Chicago, Iowa	105,000	
US-Japan	ANL (LBNL. Oregon, SLAC)	50,000	
MRI 3 calorimeter prototypes	ANL, Oregon, UTA	964,000	

VII Testbeam Plans

Fermilab

Test beam parameters matched to our needs

Momentum between 5 and 100 GeV Protons, pions, muons, electrons Resonant extraction implemented Intensity can be reduced Up to 6 m in lateral space available

Produced lengthy document with all LC calorimeter developers and Fermilab

Request for

Low energy electrons (~ 1GeV) Low energy pions (~1 GeV) Improved duty cycle

Possible test beam scenario...

Year	Calorimeter	Beam time request
2005	ECAL (CALICE)	3 weeks (electrons)
2006	Analog HCAL	4 weeks (hadrons, muons)
	ECAL + Analog HCAL + Tail catcher	5 weeks (hadrons)
2007	Digital HCAL (RPCs)	5 weeks (hadrons, muons)
	ECAL + Analog HCAL + Tail catcher	5 weeks (hadrons)
	ECAL + Digital HCAL + Tail catcher	10 weeks (hadrons)
	ECAL (US)	3 weeks (electrons)
	Digital HCAL (GEMs)	5 weeks (hadrons, muons)
2008	ECAL + Digital HCALs + Tail catcher	10 weeks (hadrons, muons)

VIII Time scale

2005	Develop design of larger chamber	
	Prototype ASICs	
	Design and prototype other subsystems	
2006	Produce chambers	
	Produce ASICs	
	Produce other subsystems	
2007	Move to test beam	
	Take data	Hadron
2008	Take data Sim	ulation
	Design LC hadron calorimeter	

IX Conclusions

• Digital Hadron Calorimetry with extremely fine granularity is a

great, novel, revolutionary and untested idea

- RPCs as active medium for a DHCAL have been developed
- Conceptual design of the electronic readout system exists

Funding permitting, we will make a great contribution to Understanding of hadronic showers

and build a basis for

designing the ILC detectors

Hot News

3 GeV electrons from DESY

