

Silicon Lab @ SINP MSU

Mikhail Merkin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Who we are:

Group of 15 people in Experimental High Energy Physics Department Institute of Nuclear Physics of Moscow State University. 5 physicists, 5 engineers, 2 programmer, 3 technicians. Lab has been created 15 years ago initially for electromagnetic calorimetry at UNK.

Who we are:

- SiLab has almost all necessary equipment for detectors' measurements.
- 2 automatic probe stations (RADAR and A4).
- 2 manual probe stations.
- http://silab.sinp.msu.ru

RADAR Automatic Probe Station

21.10.2004

RADAR Automatic Probe Station

21.10.2004

A4 Automatic Probe Station

M.Merkin, SINP of Moscow SU

A4 Automatic Probe Station

Manual Probe Station

Manual Probe Station

9

M.Merkin, SINP of Moscow SU

What we can:

- Silicon pad, strip and microstrip detectors design and development
- Silicon detectors production and tests in cooperation with Russian industry
- Front-end electronics for silicon detectors
- Slow control hard- and soft-ware for silicon detectors systems

21.10.2004

Experiments

- Hadron-electron separator @ ZEUS (DESY)
- Advanced Thin Ionization Calorimeter (ATIC) - Balloon Experiment
- Forward part of DO (FermiLab) silicon tracker – H-disks
- SVD-2 open charm experiment on U-70 at IHEP (Protvino)

ZEUS detectors on 3" & 4" wafers

Ceramic board with 2 sensors and 2 preamps for ZEUS FHES

M.Merkin, SINP of Moscow SU

Experiments

- Hadron-electron separator @ ZEUS (DESY)
- Advanced Thin Ionization Calorimeter (ATIC) - Balloon Experiment
- Forward part of D0 (FermiLab) silicon tracker – H-disks
- SVD-2 open charm experiment on U-70 at IHEP (Protvino)

Ceramic board for ATIC

M.Merkin, SINP of Moscow SU

ATIC

Silicon Matrix

detector components

Schematic of the

ATIC instrument M.Merkin, SINP of Moscow SU 21.10.2004

Experiments

- Hadron-electron separator @ ZEUS (DESY)
- Advanced Thin Ionization Calorimeter (ATIC) - Balloon Experiment
- Forward part of D0 (FermiLab) silicon tracker – H-disks
- SVD-2 open charm experiment on U-70 at IHEP (Protvino)

M.Merkin, SINP of Moscow SU

21.10.2004

18

DO H-disk

DO H-disk

Experiments

- Hadron-electron separator @ ZEUS (DESY)
- Advanced Thin Ionization Calorimeter (ATIC) - Balloon Experiment
- Forward part of D0 (FermiLab) silicon tracker – H-disks
- SVD-2 open charm experiment on U-70 at IHEP (Protvino)

25 µm pitch sensor for SVD-2 experiment

M.Merkin, SINP of Moscow SU

50 µm pitch sensor

M.Merkin, SINP of Moscow SU

SVD-2 Silicon Tracker

VA-1 Readout —

— GASSIPLEX Readout

21.10.2004

Experiments and RDs

- ECAL for Future Linear Collider (TESLA)
- Nose Cone Calorimeter for Phenix experiment at RHIC (BNL)
- CBM (Compressed Baryonic Matter) Experiment at GSI (Darmstadt)
- · DO RunIIb

TESLA Sensors: parameters

• 4" high resistivity wafers

- · wafer thickness 525 μm
- sensor size: 62.0+0.0 -0.1 mm
- scribe line: 60 μm
- active area size: 60.0

\cdot the dead zone width is about 1 mm

Pad array design (future)

Along with the diodes, the technique used for fabrication of *bias resistors* and *coupling capacitors* represents an important issue:
polysilicon resistors - production of the tile needs 7-8 masks; can be the source of additional yield reduction.

But should not be a problem to have:

- · resistors 1 10 M Ω and
- capacitors 1-10 nF.

Pad array design (future)

punch through resistors – production needs about 4 or 5 masks;

easy to produce, but needs to check whether required parameters can be achieved,

has very low radiation hardness.

In case of integrated capacitors, it needs at least 6 masks

Punch through resistors (option)

21.10.2004

21.10.2004

21.10.2004

21.10.2004

21.10.2004

Production Status

- Total 183 wafers have been developed
- Number of good sensors 132
- Yield 72%
- We had a few minor problems, but might be, it is because of fraction not good wafers.

Silicon Sensor Parameters

- pad area around -1 cm^2 ,
- capacitance per pad ~20 pF,
- leakage current < 100 nA/sensor,
- depletion voltage < 150 V,
- operation voltage > 150V,
- breakdown voltage > 400V.

TESLA Sensors: prototype

21.10.2004

21.10.2004

21.10.2004

TESLA Sensors: results

43

Institute of Nuclear Physics Moscow State University

M.Merkin, SINP of Moscow SU

First test with a complete detector slab

21.10.2004

21.10.2004

Experiments and RDs

- ECAL for Future Linear Collider (TESLA)
- Nose Cone Calorimeter for Phenix experiment at RHIC (BNL)
- CBM (Compressed Baryonic Matter) Experiment at GSI (Darmstadt)

Tungsten absorbers (2.5 mm)

Tungsten absorbers (16 mm)

21.10.2004

detectors in middle

Event characterization

Two central arms for measuring hadrons, photons and electrons

Two forward arms for measuring muons

M.Merkin, SINP of Moscow SU

21.10.2004

- Starts at Z
- Radial Coverage
- Geometrical Depth
- Absorber
- Sampling cells
- Total depth (Rad. length)
- Expected EM en. Resol.
- Cell size

- 40 cm
- 50 cm
- 20 cm
- W
- 22
- ~40
- 20%
- -1.5*1.5 cm²

Parameter	Value
<u>Sensor active size (cm)</u>	6 x 6
Pixel size (cm)	1.5 x 1.5
Pixels per sensor	16
Sensors per sampling layer (max)	216
Sensors in the detector	3656
Total area of Silicon (m²)	13
Preamp	32 channels
Chips / sensor	0.5
Channels / layer	< 3500
Readout channels	~10000
Dynamic range (MIP's)	100 to 500

PHENIX Sensors

M.Merkin, SINP of Moscow SU

PHENIX Sensors

21.10.2004

Flex interconnect

M.Merkin, SINP of Moscow SU

- Detector design:
 - 6" wafers
 - Radiation hard detectors & high voltage application
 - Double side & double side double metal detectors
- Electronics in collaboration with MEPhI:
 - Front-end electronics for silicon detectors: fast, low power consumption, high dynamic range
- Simulation in collaboration with Obninsk University

- Large area integrated capacitors
- AC Couple pad sensors
- PHENIX full depth prototype by the end of 2005 (hope earlier) with DC sensors and 32 channels R/O boards.
- Strip sensors for PHENIX (?)