Hadron Calorimetry with 1-2 bits

Vishnu V. Zutshi NIU/NICADD

Introduction

 We are basically talking about a calorimeter with a finite number of thresholds (1-3)

 Will look at gas and scintillator: energy resolution shower widths <u>clustering</u>

Ncells for hadrons

Single particle resolutions

Single Particle Resolution (10GeV)

Single Particle Resolution (50GeV)

Nhit correlations

Nhit correlations

Nhit correlations

Alternatively..

Compensation

 So in a sense counting has its own version of the compensation problem in scintillators

- With multiple threshold this can be overcome by weighting cells differently (according to the threshold they passed)
- In MC 3 thresholds seem to be adequate

After semi-digital treatment

Single Particle Resolution (50 GeV)

Similar treatment to 10 GeV....

Single particle resolutions

ToF dependence

1cm x 1cm scintillator

Gas vs. scintillator

2'

Single particle resolutions

Non-linearity

- Note that the nhit/GeV does not remain constant
- This will introduce additional pressure on the constant term
- For scintillator the non-linearity can be effectively removed by 'semi-digital' treatment

- Need a hierarchy in the absence of an energy measurement
- Clumpiness of the surrounding
- A simple-minded realization of this used here:

 $d_i = \Sigma (1/dR_{ij})$ where dR_{ij} is the angular

distance between cell 'i' and cell

10 GeV π[±]

Thanks Ben

Density vs. E

Gas (1cm x 1cm)	Scint (1cm x 1cm)	Scint (3cm x 3cm)
10	40-	40-
19 -	39 -	39-
7-	38-	38-
77 - 16 -	36-	36-
5-	35- 0 0	35-
4 -	34-	34-
3-	33-	33-
12-	32-	32-
1-	31-	31-
9-	30	29-
	28-	28-1
7-	27 - matil ma	
16 -	26-	26-
5-0	25-	25-22222222222222222222222222222222222
4 -	24-	24-
3-	23-	23-
2-	22-	22-
0-	20-	
9-1		
8-	18-	18-
7-	17-	17-
6-	16-	16-
5-0	15-	15-
4-	14-	14-
3-	13-	13-
1-5	12	112
0-1		
- 9-11		
8-	8- ¹ 11111111111111111111111111111111111	
7-11	7- <mark></mark>	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
6-	6-	6-
5-	5-	5-
4-	4-	4-
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0	.050 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050	0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Width Definition

• Find centroid $\{w_i x_i / \Sigma w_i\}$ • 'width' = $sqrt(w_i dR_i^2/w_i)$ • Three w_i were used: Unweighted (=1) E weighted (=cell energy) 'Density' weighted (nearest neighbor occupancy in 5x5 window in lyrs n-1, n, n+1

Distance to Farthest Cell

Density of Farthest Cell

Distance to Farthest Cell

Density of Farthest Cell

Backscatter

Shower Width for 10GeV π^{\pm}

Shower Width for 50GeV π^{\pm}

π[±] Angular Width

π[±] Angular Width

π[±] Angular Width

Comments

- Previous slides indicate that shower separation may not suffer at all
- There is no clear cut case either way at the moment; detailed studies of assessing impact needed
- Going to look at cluster separability next
- Need to evaluate this in the global context of calorimeter performance

- Local 'density' maxima based clustering seems to work
- Alternative to track initiated clustering
- Can be used in the ECal and HCal
- Full PFlow implementation has shown encouraging results

10 GeV π^0

 $D\pi$

Summary

- Large phase space in the nbitsegmentation plane for hadron calorimetry. Is there an optimum? The answer may be medium dependent.
- Scintillator and Gas 'digital' calorimeters behave differently
- Needs verification in data
- More studies underway

