a few selected calorimeter-related items from Paris LCWS

Ray Frey LCD May 20, 2004

Items of special interest (to me) ...

- warm vs cold
 - backgrounds
 - Tim (2 weeks ago)
 - K. Desch
 - timing
 - forward cal (last week)
- revisiting global detector design
- particle flow
- Si/W ECal

Accelerator Technology

Warm or Cold ??

Implications on detector design

(my opinion: small effects)

- energy spread
- bunch timing structure
- crossing angle

Timing is good

Warm detector concern:

Pileup of $\gamma\gamma \rightarrow$ hadrons over bx train

Timing and Bunch Structure

- Warm-Cold Differences and Possible Implications
- Background Characteristics
- Hadronic Background: Impact on Physics

Klaus Desch, University of Hamburg

LCWS04, Paris, 20/04/04

Tracking:

Studies indicate 2-5 ns track timing possible in principle for TPC and Si Detailed time-dependent simulation needed – non-trivial

Calorimetry (most important in central detector, many neutrals):

With electronics inside Si-W calorimeter 5ns for single cells achievable in SLAC design

Averaging over 30 hits: 5 ns / sqrt(30) = 1 ns (Jaros, Frey)

Concerns:

- Distribute o(GHz) clock over a large detector
- Timing calibration for $o(10^8)$ cells ($o(10^5)$ r/o chips) to ns precision
- Cluster finding to do the averaging need detailed time-dependent simulation
- Charged particles in endcap: time-of-flight correction (loopers!)

Integrating the hadronic background from more than a few bunch-crossings has a sizeable impact on the physics performance

America, Asian, and European studies agree

At NLC, a bunch tagging of few ns is needed to become comparable to the TESLA situation

- \rightarrow R&D on detector timing is vital for warm technology
- → Timing capability adds complexity how much?

Revisiting global detector design

- Special parallel session on global design
- Brient:
 - Reconsidering TESLA TDR detector
 - Merging SiD and TDR
- Keeping the current R&D consortia (eg CALICE)
- Two leading detector models: TDR and SiD
- How to "internationalize" the involvements

Two detector options today SD vs TDR [*]

J-C Brient- LCWS 2004

		TESLA	SD	LD	JLC
	Tracker type	TPC	Silicon	TPC	Jet-cell drift
The 2 options	ECAL				
following J.Jaros	R _{min} barrel (m)	1.68	1.27	2.00	1.60
	Туре	Si pad/W	Si pad/W	scint. tile/Pb	scint. tile/Pb
<u>Silicon area TDR</u> ~ 2.6 Silicon area SiD	Sampling	$30 \times 0.4X_0$ +10 × 1.2X ₀	$30\times 0.71 X_{\rm O}$	$40 \times 0.71 X_0$	$\frac{2^{\circ}}{2} \times 0.71 X_0$
	Gaps (active) (mm)	2.5 (0.5 Si)	2.5 (0.3 Si)	1 (scint.)	1 (scint.)
	Long. readouts	40	30	10	3
	Trans. seg. (cm)	≈1	0.5	5.2	144
4	Channels $(\times 10^3)$	32000	50000	135	5
The only(main) justification for the SD detector ??!!	Z _{min} endcap (m)	2.8	1.7	3.0	1.9
	HCAL				
	$R_{\rm min}$ (m) barrel	1.91	1.43	2.50	2.0
	Туре	T: scint. tile/S.Steel D: digital/S.Steel	digital	scint. tile/Pb	scint. tile/Pb
	Sampling	$38 \times 0.12\lambda$ (B), $53 \times 0.12\lambda$ (EC)	$34\times 0.12\lambda$	$120\times 0.047\lambda$	$\frac{1}{3}^{\alpha\alpha} \times 0.047\lambda$
	Gaps (active) (mm)	T: 6.5 (5 scint.) D: 6.5 (TBD)	1 (TBD)	2 (scint.)	2 (scint.)
	Longitudinal readouts	T: 9(B), 12(EC) D: 38(B), 53(EC)	34	3	4
	Transverse segmentation (cm)	T: 5–25 D: 1	1	19	14
	θ_{\min} endeap	50	2°	2°	8°
	Coil			•	
	$R_{\rm min}$ (m)	3.0	2.5	3.7	3.7
	B (T)	4	5	3	3
				option: Si pad shower max. det.	scint. strip (1 cm) shower max. det. (2 layers)

J-C Brient- LCWS 2004

Radius, length, size, ...

ECAL-SiD- ALCPG

ECAL-TDR- CALICE

Is it so different?

At least, there is a good agreement on the global geometry

J-C Brient- LCWS 2004

The ECAL internal radius

mpact on EFL Presentation JCB at LBL 2000 – ALC meeting

For SD geometry, there is an average of ~65GeV of photons closer than 2.5 cm versus ~20 GeV for the TDR geometry

J-C Brient- LCWS 2004

What for different physics process

Efficiency of reconstructing photons close to ch. track (D<Rm) is <<100%

Variation with the ECAL endcap entrance

Internal radius fixed at 1.50 m and B=4T

We define Rm at 2cm

Length of the TPC

Variation with the internal ECAL radius

Z endcap at 2.00 m and B=4T

SD Values Rint=125, Zec=170 and B=5T

Is it possible reducing the calor. cost ? AND saving the EFLOW performances

ECFA Krakow Sept. 2001

Curves ISOCOST(area) versus SiD

WW at 800 GeV

For the TDR type of detector (R=170cm and 4T)

14% of the events have more than 50 GeV in the difficult region

For the SiD detector (R=125cm and 5T)

• <u>32% of the events have more than 50 GeV</u> in the difficult region

Due to the large value of the WW cross section, Any signal in jets could be overflowed ?!

For the photon(s) reconstruction , the ECAL radius and Z endcap is much more important !!!

Impact on the jets to be quantified ?

To reduce the ECAL cost,

Playing with layers number is more efficient and less penalizing for the performances on jet , τ ,... ?!

A new detector proposal ~ 20-25 layers ECAL at R≈1.55m ?? Z_{ECAL} ??

JERYMPORTANI VERYMPERS

Summary of the ECAL change vs TDR

- ► VFE inside for the ECAL, alveoli thinner , better eff. Molière radius
- For the simulation, I propose to use 30 layers to be consistent with the SiD ECAL and with the prototype in construction

Changing the general geometry

► VFE inside for the HCAL (Si-PM, or digital readout for DHCAL)

 \rightarrow NO SPACE for fibbers in overlap !!! \bigcirc

 \rightarrow NEW distance TPC-ECAL in endcap !!!!

J-C Brient- LCWS 2004

Other open questions

- Quantitative variation of performances on jet(s) (and impact on physics program) with TPC size
- Is there a way to avoid the hole between Forward CAL and ECAL together with the possibility to open the detector ?
- ► A dedicated study of the CALOR. endcap geometry

- Using ECAL to seed the high Pt track in the SiD tracker ? a kind of substitute for the large number of points in a TPC
- ► FCH (SET?) in silicon device inserted in ECAL CFi frame ? See next slide
- ► What is the **number of X0** of the endplate and readout electronics ? what is the distance TPC-ECAL ?

A lot of questions , Just few answers/guess

I propose you my preliminary **personal conclusions**

- For CALOR. geometry , the TDR detector is not so different from the SD detector, but the size
- The PFLOW is very probably more difficult with the SD detector (to be quantified)
- The impact on the performances from different TPC size, with/without precise points, etc... has to be QUANTIFY

May be it is time to begin the second round of detector optimisation

- ▲ Inter-regional proposal would be **VERY WELCOME** !!
- ▲ a proposal at the next LCWS ?

Where to go?

- SiD has the lead for the implementation of SiW as an ECal technology (blatantly biased personal opinion)
- But ignoring cost, the reduced radius of SiD is a disadvantage for performance
- TDR and SiD: save money by reducing the number of layers
 - Need to quantify the performance costs
- For TDR: reduce cost by reducing radius
- For SiD: increase performance by increasing radius
- Does it make sense to work toward a common global concept?
- Decouple this from technological implementation, which can remain on separate paths ?

SD Si/W

M. Breidenbach, D. Freytag, N. Graf, G. Haller, O. Milgrome Stanford Linear Accelerator Center

> R. Frey, D. Strom *U. Oregon*

V. Radeka Brookhaven National Lab

Concept

(time expansion)

Electronics design (contd)

- Present design gives: Noise = 20-30 e/pF

 C_{in} = pixel + traces + amplifier
 5.7pF + 12pF + 10pF ≈ 30 pF

 ⇒ Noise ≈ 1000 e (MIP is 24000 e)
- Timing: ~ 5 ns per MIP per hit
 - D. Strom MC (next)
 - Simulation by D. Freytag
 - Check with V. Radeka:
 "Effective shaping time is 40ns; so σ ≈ 40/(S/N) ≈ 5 ns or better."

Timing MC

D. Strom, Calor2004

Toy Monte Carlo Studies of Timing Resolution for 30 Samples

Assumptions – wild guesses – (waiting for real electronics model):

- Each MIP has 30 samples at random distances from the read-out chip
- Threshold for timing measurement is 8,000 electrons.
- Input FET has $g_m = 1.5$ mS and the noise contribution from the rest of the amplifier is equal to input FET except for the "floor" noise.
- The charge measurement has a noise floor of either 0 or 4000 electrons
- Time constant for charge measurement is 200 ns.
- Time constant for the time measurement is 50 or 200 ns.
- The noise signals in the timing and charge circuits are uncorrelated
- Random 5% channel to channel variation in threshold
- Random 1% event-to-event variation in threshold
- Random 5% uncertainty in constants used for correction.
- Reject time measurements far from mean

Timing MC (contd)

Sample Timing Results 200 ns time constant, no noise floor

Timing MC (contd)

Needs to be demonstrated in a test beam!

Concerns & Issues:

- Needs testing with real electronics and detectors
- verification in test beam
- synchronization of clocks(1 part in 20)
- physics crosstalk

• For now, assume pileup window is ~5 ns (3 bx)

Power

Power (contd.)

	Current	Instanta neous	Time	Time	Duti	Average
Phase	Current (mA)	Power (m)A0	begin (us)		Duty	Power (m\\\)
		(11100)	(us)	Enu (us)	Facili	(11100)
All Analog "on"	370	930	0	9	0.00108	1.0
Hold "on", charge amp off	85	210	9	100	0.01092	2.3
Analog power down	4	10	100	8333	0.988	9.9
LVDS Receiver, etc		3	0	8333	1	3.0
Decode/Program		10	1	100	0.01188	0.1
ADC		100	10	500	0.0588	5.9
Readout		50	500	2500	0.24001	12.0
Total	459	1313			(34.2

- < 40 mW per wafer (~ 10^3 pixels)
- ⇒ Passive cooling by conductance in W to module edges
 - $\Delta T \le 5^{\circ}$ from center to edge
- \Rightarrow Maintains small gap & Moliere radius

Power (contd.)

 Even though accelerator live fractions are 3×10⁻⁵ (warm) and 5×10⁻³ (cold), current electronics design parameters give small difference

Maintaining Moliere Radius

Components in hand

Tungsten

- Rolled 2.5mm
 - 1mm still OK
- Very good quality
 - < 30 µm variations</p>
- 92.5% W alloy
- Pieces up to 1m long possible

Silicon

- Hamamatsu detectors
- Should have first lab measurements soon
- (Practicing on old 1cm dets.)

18