
20 May 2004 SLAC LCD       R. Frey 1

a few selected calorimeter-related
items from Paris LCWS

Ray Frey
LCD May 20, 2004

Items of special interest (to me) …

• warm vs cold
backgrounds

Tim (2 weeks ago)
K. Desch

timing
forward cal (last week)

• revisiting global detector design
• particle flow
• Si/W ECal
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Accelerator Technology

Warm or Cold ??

Implications on detector design

(my opinion: small effects )

• energy spread

• bunch timing structure

• crossing angle
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Timing is good
Warm detector concern:
Pileup of γγ→ hadrons over bx train

T. Barklow

Si/W ECal
Timing ∼ 1 ns

192 bx pileup
(56 Hadronic Events/Train)

3 bx pileup (5ns)
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Timing and Bunch Structure

• Warm-Cold Differences and Possible Implications

• Background Characteristics

• Hadronic Background: Impact on Physics

Klaus Desch, University of Hamburg

LC WS04, Paris, 20/04/04
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What can be achieved?

Tracking:

Studies indicate 2-5 ns track timing possible in principle for TPC and Si
Detailed time-dependent simulation needed – non-trivial

Calorimetry (most important in central detector, many neutrals):

With electronics inside Si-W calorimeter 5ns for single cells achievable in SLAC 
design
Averaging over 30 hits: 5 ns / sqrt(30) = 1 ns    (Jaros, Frey)

Concerns:

- Distribute o(GHz) clock over a large detector
- Timing calibration for o(108) cells (o(105) r/o chips) to ns precision
- Cluster finding to do the averaging – need detailed time-dependent simulation
- Charged particles in endcap: time-of-flight correction (loopers!)
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Preliminary Summary

Integrating the hadronic background from more than a few bunch-crossings
has a sizeable impact on the physics performance

America, Asian, and European studies agree

At NLC, a bunch tagging of few ns is needed to become comparable to the
TESLA situation 

R&D on detector timing is vital for warm technology

Timing capability adds complexity – how much?
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Revisiting global detector design

• Special parallel session on global design
• Brient: 

Reconsidering TESLA TDR detector
Merging SiD and TDR 

• Keeping the current R&D consortia (eg CALICE)

• Two leading detector models: TDR and SiD
• How to “internationalize” the involvements
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Two detector options today  …. SD vs TDR   [*]

[*] J.Jaros at ALCPG-SLAC04

Digital (RPC,GEM,..)Digital (RPC,GEM,..)      Digital  / Tile AHCAL     Digital  / Tile AHCAL  

TRACKER

Silicon trackerSilicon tracker          TPC and Si envelope  TPC and Si envelope  

Partly the same people

        SD SD                  TDR   TDR  

tungsten-silicon both options

CALORIMETRY

ECALECAL
        

HCALHCAL
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ECAL

HCAL

The 2 options 
following  J.Jaros

Silicon area TDR
Silicon area SiD

~ 2.6

Rmin barrel (m)

Zmin endcap (m)

The only(main) justification
for the SD detector ??!!

TESLA SD LD JLC
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Reason for the TPC radius of 1.60m
 Single track resolution ?
 Separability ?

Reason for 1.70m for the ECAL radius
 TPC radius + 10cm

Reducing the external radius of the TPC (reduce the cost of the overall detector)
  Impact on the momentum resolution ? 

 if needed  a precise point outside TPC can be added ?? 
  what about the charged-neutral separation ?? 

Reason for 2.50m for the TPC length 
 Covering at low angle ? but the FTD is doing it with FCH 

Tracker size

ECAL size
 Compact ECAL to save space for HCAL inside coil

Radius, length, size, … 
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ECAL-SiD- ALCPG ECAL-TDR- CALICE 

1.27m 

1.68m 

At least , there is a good agreement on the global geometry

Is it so different ? 

SD TDR
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e+e– → ZH → jets  at √s = 500 GeV

Presentation JCB at LBL 2000 – ALC meeting 

For SD geometry, there is an  average of ~65GeV of photons 
 closer than 2.5 cm versus ~20 GeV for the TDR geometry

SD geometry

TDR geometry

The ECAL internal radius 

     WARNING
 here for SD,  I use 
B=6T while now 
people  talk of B=5T
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        Energy per event
for photons closer than 2.5 cm
from a charged track
At the ECAL entrance

GeVdistance to closest CH. cm
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Example  here with   B=4T, R=170cm

14% of the sample

The average is hereThe average is here

What for different physics process What for different physics process 

√s = 800 GeV

e+e– → W W  at √s = 800 GeV

Efficiency of reconstructing photons close to ch. track (D<Rm)  is <<100%
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Distance of the ECAL endcap             
cm

J-C.B.
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Internal radius fixed at 1.50 m and B=4T

W W final state at 800 GeVW W final state at 800 GeV

We define Rm at 2cm 

When going to 1 TeV 

Variation with the ECAL endcap entranceVariation with the ECAL endcap entrance

SD ValueSD Value

  Length of the TPC
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Z endcap at 2.00 m and B=4T

Internal radius of the  ECAL                  cm 

W W final state at  1 TeV1 TeV 

Variation with the internal  ECAL radius Variation with the internal  ECAL radius 

SD Value

SD Values Rint=125, Zec=170 and B=5T
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Is it possible reducing the calor. 
cost  ? ANDAND
saving the EFLOW performances 

ECFA Krakow Sept. 2001ECFA Krakow Sept. 2001

Tesla Design Report 

40 LAYERS

20 LAYERS
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Curves ISOCOST(area) versus SiD 

SiD detector

Possible 
Region

Of 
Interest

TESLA TDR
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25 layers
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Internal radius of the ECAL
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For the TDR type of detector (R=170cm and 4T)(R=170cm and 4T)
14% of the events have more than 50 GeV in the difficult region 

For the SiD detector             (R=125cm and 5T)(R=125cm and 5T)
32% of the events have more than 50 GeV in the difficult region 

For the photon(s) reconstruction , the ECAL radius and Z endcapFor the photon(s) reconstruction , the ECAL radius and Z endcap
                                                              is much more important !!!is much more important !!!
                                                                      Impact on the jets to be quantified  ?

To reduce the ECAL cost, 
Playing with layers number is more efficient and less penalizing for the performances on jet ,  ,… ?! 

VERY I
MPORTA

NT

 N
UMBERS 

The relevant law is in BR2/Rm

  A new detector proposal A new detector proposal   
  ~ 20-25 layers ECAL at R≈1.55m ?? ZECAL ?? 

W W at 800 GeV

Due to the large value of the WW cross section, 
Any signal in jets could be overflowed ?!
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FULL SIM
and PFA RECONS 

Jet mass          GeV   

 →, 

 90%   2%   →

 17%   82%      →

Jet mass in 
  0.2-2

Jet mass 
    < 0.2 Tau decays ID is essential for  

 ID and  polarisation measurement 

 (250 GeV) →  

charged pion

Photons from o

 
Looking along the
charged track
in  5-12 X0

Looking along 
the charged track 
in the first 4 X0

Why 
“continuous”
readout  is 

needed
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FULL SIM
and PFA RECONS 

Jet mass          GeV   

 →, 

 90%   2%   →

 17%   82%      →

Jet mass in 
  0.2-2

Jet mass 
    < 0.2 Tau decays ID is essential for  

 ID and  polarisation measurement 

 (250 GeV) →  

charged pion

Photons from o

 
Looking along the
charged track
in  5-12 X0

Looking along 
the charged track 
in the first 4 X0

Why 
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Summary of the  ECAL  change vs TDR
► VFE inside  for the ECAL, alveoli thinner , better eff. Molière radius
► For the simulation, I propose to use 30 layers to be consistent with the SiD ECAL

and with the prototype in construction 
Changing the general geometry 
► VFE inside  for the HCAL  (Si-PM, or digital readout for DHCAL)

   → NO SPACE for fibbers in overlap !!! 
   → NEW distance TPC-ECAL  in endcap !!!!

VFE (with ADC?)  send each BX to DAQ board (with/without ADC) 
DAQ-ADC board digitise, store in digital memory, MUX  to optical link 

VFE inside

DAQ-ADC  board

▪ VFE time occupancy is about 1/200 for TESLA 
▪ VFE On-Off take about 100 s
 Simulation gives ~100µW/channel !!! (source CdlT)

Passive cooling would be sufficient (source JB)

New way of the ECAL readout 

 R&D in CALICE ECAL (IN2P3,KNU,MSU) 
 to quantify this passive cooling limit  



Modify SimulationModify Simulation
      (better Rm  )

eff
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► FCH (SET?) in silicon device inserted in ECAL CFi frame ? See next slide 

►  Using ECAL to seed the high Pt track in the SiD tracker ? 
      a kind of substitute for the large number of points in a TPC

Other open questions

► Quantitative variation of performances on jet(s) 
       (and impact on physics program)  with TPC sizeTPC size

► What is the number of X0 of the endplate and readout electronics ?
 what is the  distance TPC-ECAL ?  

► Is there a way to avoid the hole between Forward CAL and ECAL 
     together with the possibility to open the detector ?

► A dedicated study of the CALOR. endcap geometry 
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∆Z ≤ Strip Width

ECAL 
ECAL 

module
module

Add  alveoli with 2 double side strips without tungsten

▪ Minimize the thickness/”tracker point”
▪ Minimize the distance to the ECAL
▪ Minimize the inter alignment tracker-ECAL
 and
         ASSEMBLING SIMPLICITYASSEMBLING SIMPLICITY

Strips along RΦ
  in the barrel

If precise  point(s) outside TPC
 is mandatory 
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 For CALOR. geometry  , the TDR detector is not so different 
     from the SD detector,  but the size 

 The PFLOW is very probably more difficult with the SD detector
      (to be quantified ) 

 The impact on the performances from different TPC
     size, with/without precise points, etc… has to be QUANTIFY
 

May be it is time to begin the second round of detector optimisation
 

➘  Inter-regional proposal  would be VERY WELCOMEVERY WELCOME   !!

➘  a proposal at the next LCWS ?

A lot of questions  , Just few answers/guess 

I propose you my preliminary personal conclusionspersonal conclusions  
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Where to go?

• SiD has the lead for the implementation of SiW as an ECal
technology (blatantly biased personal opinion)

• But ignoring cost, the reduced radius of SiD is a disadvantage 
for performance

• TDR and SiD: save money by reducing the number of layers
Need to quantify the performance costs

• For TDR: reduce cost by reducing radius
• For SiD: increase performance by increasing radius

• Does it make sense to work toward a common global concept ?
• Decouple this from technological implementation, which can 

remain on separate paths ?
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SD Si/W

M. Breidenbach, D. Freytag, N. Graf, 
G. Haller, O. Milgrome

Stanford Linear Accelerator Center

R. Frey, D. Strom
U. Oregon

V. Radeka
Brookhaven National Lab
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Concept
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Wafer and readout chip
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• Dynamically switched Cf (D. Freytag)
Much reduced power

• Large currents in 1st stage only
Signals after 1st stage larger

• ∼ 0.1 mV → 6.4mV for MIP
• Time

No 4000e noise floor
Can use separate (smaller!) shaping 
time (∼ 40 ns)
Readout zero-crossing discharge 
(time expansion)

Single-channel 
block diagram

Note: Common 
∼ 50 MHz clock

Electronics design – Present
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Electronics design (contd)

• Present design gives:
Noise = 20-30 e/pF

• Cin = pixel + traces + amplifier
5.7pF + 12pF + 10pF ≈ 30 pF

⇒ Noise ≈ 1000 e  (MIP is 24000 e)

• Timing: ∼ 5 ns per MIP per hit
• D. Strom MC (next)
• Simulation by D. Freytag
• Check with V. Radeka:

“Effective shaping time is 40ns;
so  σ ≈ 40/(S/N) ≈ 5 ns or better.”
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Timing MC
D. Strom, Calor2004
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Timing MC (contd)
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Timing MC (contd)

50 ns time constant and 
30-sample average Concerns & Issues:

• Needs testing with real 
electronics and detectors

• verification in test beam

• synchronization of clocks 
(1 part in 20)

• physics crosstalk

• For now, assume pileup 
window is ~5 ns (3 bx) 



20 May 2004 SLAC LCD       R. Frey 14

Power

• Use power cycling (short LC 
live times) to keep average 
power in check 

• 40 mW and no Cu look to be  
realistic options
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Power (contd.)

• < 40 mW per wafer (∼ 103 pixels)
⇒ Passive cooling by conductance in W to 

module edges 
∆T≤ 5° from center to edge

⇒ Maintains small gap & Moliere radius
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Electronics Duty Factor

0.001

0.01

0.1

0.001 0.01 0.1

Off/On Power Ratio

Du
ty

 F
ac

to
r Warm Tr=1 microsec

Cold Tr=1 microsec
Warm Tr=10 microsec
Cold Tr=10 microsec

M. Breidenbach, 
SLAC ALCPG WS

Power (contd.)

• Even though accelerator live fractions are 3×10-5 (warm) and 5×10-3 (cold), 
current electronics design parameters give small difference
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• Shouldn’t need copper heat sink if 
present heat load estimates are 
correct (or close to correct).
Angle = 11 mrad

• Compare with effective Moliere
radius of 3mm at 1.7m (CALICE?): 
Angle = 13 mrad

• Capacitors may be biggest 
challenge

Maintaining Moliere Radius



18

Components in hand

Tungsten
• Rolled 2.5mm

1mm still OK
• Very good quality 

< 30 µm variations
• 92.5% W alloy
• Pieces up to 1m long possible

Silicon

• Hamamatsu detectors
• Should have first lab 

measurements soon
• (Practicing on old 1cm dets.)
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