Higgs mass measurement and $\gamma^{(*)}\gamma^{(*)}$ backgrounds

Toshinori Abe 05/06/2004

Introduction

- Want to study γ^(*)γ^(*) → hadrons effect on Higgs mass measurement
 How sever the backgrounds are for Warm?
 How much difference do we see between Cold and Warm?
- Compare the results with European study

Contents of this talk

- We are doing the followings
- 1. Analysis overflow and 5C kinematical fit
- 2. Lesson from Higgs mass measurements with no $\gamma^{(*)}\gamma^{(*)}$ suppression
- 3. γ^(*)γ^(*) → hadrons suppression and European results
 4. Our results

Analysis assumption

Use e⁺e⁻→ZH→qqbb at E_{cm}=500GeV.
Use γ^(*)γ^(*)→hadrons provided by Tim to overlay on signal and background events.
Only e⁺e⁻→ZH→qqqq process is taken into account as backgrounds.
Use fast detector simulation (SDMar01).

Event selection

Force into four jets using Durham algorithm. Jets to form Higgs mass satisfy b-jet tagging. We require four-momentum conservation and constrain one of the two dijet masses to be $m_7=91.2$ GeV (5C-fit). One of the six possible jet pairings, the one minimizing χ^2 of the fit is chosen.

Etc....

5C Kinematical fit

The code is provided by courtesy of European colleagues.

Reconstructed Higgs mass

100fb⁻¹

m_{Higgs} without $\gamma^{(*)}\gamma^{(*)}$ suppression

100fb⁻¹

$\gamma^{(*)}\gamma^{(*)}$ effect on Higgs mass

- $\gamma^{(*)}\gamma^{(*)} \rightarrow$ hadrons results in widening reconstructed Higgs mass distribution.
 - 1. 5~8ns time separation is need to equivalent to TESLA.
 - 2. About 2X worse measurement error for 20BX compared to no $\gamma^{(*)}\gamma^{(*)} \rightarrow$ hadrons.
- We need to suppress $\gamma^{(*)}\gamma^{(*)} \rightarrow$ hadrons.

Possible cut to suppress $\gamma^{(*)}\gamma^{(*)}$ backgrounds

European colleague already studied to suppress $\gamma^{(*)}\gamma^{(*)}$ backgrounds and they found P_T cut is very useful.

 After P_T >1.0GeV requirement, most of γ^(*)γ^(*) backgrounds are gone.

y(*)y(*) background suppresion

Angle between jet-axis and particles

Not same number of events...

European results (500fb⁻¹)

Higgs mass (European method)

- P_T >1.0GeV requirement helps to suppress the γ^(*)γ^(*) effect on Higgs mass measurement.
- But we still need 5~8ns time separation to match up Cold (TESLA) environment.
- The larger error with P_T >1.0GeV can be understood due to information loss of reconstructed jet energy.

Our approach

- We want to recover jet energy resolution to improve reconstructed Higgs mass resolution with P_T >1.0GeV.
- Since we use Linear Collider environment with which we know total four momentum of the reaction, we could recover the jet energy resolution.
- We already use this information (5C fit), but European colleague uses resolution function which is determined with "NO" P_T >1.0GeV requirement. → re-determine the function with the requirement.

Higgs mass distribution

Our results (500fb⁻¹)

N _{γγ} →ha	δm_{Higgs}	δm _{Higgs} / δm _{Higgs} (0)	<mark>Ν_{γγ} vs. δ m_{Higgs} (500fb[*]</mark>
drons	(MeV)		S ^{0.12} ⊢
0.0	71		
1BX	74	1.04	€ 0.08 NLC
TESLA	77	1.08	0.06
4BX	79	1.11	0.04
5BX	79	1.11	
10BX	82	1.15	0 1 2
20BX	81	1.14	

 χ^2 / ndf

1.43e-006 / 4

Compared to European results

N _{γγ} →hadrons	δm _{Higgs} (MeV)	δm _{Higgs} (MeV)
	(European's)	(Ours)
0.0	68	71
TESLA	75	77
4BX	78	79
18/20BX	92	<mark>81</mark>

Summary

- Larger γγ backgrounds results in increasing error of Higgs mass measurement, so we need good time separation for warm environment.
- European colleague establishes efficient γγ backgrounds suppression, but it looks we still need good time separation.
- 5C-fit recovers the measurement accuracy with reasonable level compared to Cold environment even 20BX case.
- Our and European results are consistent (<10BX).