Effect of Energy Spread on LC Mass Measurements

Tim Barklow SLAC April 29, 2004

Study Effect of Energy Spread on Top, Higgs, and SUSY Mass Meas

Normalized Lumi Weight Ecm Distributions including Beamstralung & Linac Energy Spread

Top Pair-Prod. Cross Section @ Threshold

- need knowledge of E-spread FWHM to level of ~0.1%
- top mass error still under study, but statistical improvement should be small when E-spread is reduced from 0.6% FWHM to 0.2% FWHM

Simdet Detector Simulation of $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^- \qquad \sqrt{s} = 500 \, GeV \, L = 500 \, fb^{-1}$

Energy Spread Comparison

Estimate Statistical Error on Smuon Mass Assuming Perfect MC Simulation

Simdet Detector Simulation of $e+e- \rightarrow Zh$ $\sqrt{s} = 350 \ GeV \ L = 500 \ fb^{-1}$ $Z \rightarrow e^+ e^-, \mu^+ \mu^-$

with background

Energy Spread Comparison

Estimate Statistical Error on Higgs Mass Assuming Perfect MC Simulation

Energy Scale Error

 $\frac{\Delta E_{b}}{\Delta E_{b}} = 0$

$$\Delta M_{\tilde{\mu}} \approx 0.05 \Delta E_{b} \implies$$

$$\frac{\Delta E_{b}}{E_{b}} = 20 \frac{M_{\tilde{\mu}}}{E_{b}} \frac{\Delta M_{\tilde{\mu}}}{M_{\tilde{\mu}}} = 9.0 \frac{\Delta M_{\tilde{\mu}}}{M_{\tilde{\mu}}}$$

$$\Rightarrow \frac{\Delta E_{b}}{E_{b}} = 700 \text{ ppm}$$
for $\Delta M_{\tilde{\mu}} = 17 \text{ MeV}$

 $\frac{\Delta E_{b}}{2} = 0.008$

TESLA Study of M_H measurement using kinematic fit of qqll and qqbb

2500 No beam spread L 2000 With beam spread Effect of beam spread ents/2GeV 1500 - statistical accuracy degrades from 45 to 50 MeV in HZ \rightarrow bbgg channel from 70 to 80 MeV in HZ \rightarrow bbll channel if one assumes (0.5%) beam spread for both e⁺ and e⁻ 500 \Rightarrow statistical accuracy degrades 100 105 110 115 120 125 130 135 140 145 150 m_µ [GeV] from 72 to 76 MeV (6%) for TESLA \rightarrow NLC (*bbll*) from 46 to 48 MeV (4%) for TESLA \rightarrow NLC (*bbqq*)

HZ→bbqq, L=500fb⁻¹, √s=350GeV

	δM_h in MeV		
	TESLA	TESLA	NLC
Decay mode	$\delta E/E=0$	δ E/E=0.1%	δ E/E=0.3%
recoil mass	110	117	143
$\operatorname{ZH} \to l^+ l^- q \overline{q}$	70	72	76
$ZH \rightarrow q\overline{q}b\overline{b}$	45	46	48
Combined	38	39	40

MSSM theory error on m_h : (S. Heinemeyer)

Current theory uncertainty: $\delta m_h^{\text{theo,today}} \approx 3 \text{ GeV}$ Future theory uncertainty: $\delta m_h^{\text{theo,future}} \lesssim 0.5 \text{ GeV}$ necessary/possible Future parametric uncertainty: $\delta m_h^{\text{para,future}} = \mathcal{O}(0.2 \text{ GeV}) (m_t, \alpha_s)$

Summary

- The degradation in statistical error for m(SUSY) is negligible for the endpoint technique when the energy spread is increased from 0.1% to 0.3%. The degradation is of O(10%) for small width fermion threshold scans (42 MeV vs 38 Mev).
- There is a 20% degradation in the statistical error for m(Higgs) when the energy spread is increased from 0.1% to 0.3%, assuming the recoil mass technique (143 Mev vs 117 Mev). Other Higgs mass measurement techniques, such as a kinematic fit of *llbb* and *qqbb*, have a much smaller degradation.