The LHC/LC Interface

Progress Report of the LHC/LC Study Group

LCD Meeting, 30 Oct 03 J. Hewett

The LHC/LC Interface and the Science Timeline

Altarelli's View of the Timeline:

FNAL VLHC W0rkshop 16-18 Oct

Now.....a political digression:

A few slides taken from Altarelli's Summary Talk at the VLHC Workshop....

Thanks to TGR

Money constraints

The total money spent at present in hep labs in the world is ~ 2-2.5 B\$/year (~3 CERN budgets)

Money that can be invested in new machines is ~30%

~ 6-7.5 B\$/10 years

Cost of NLC ~ CLIC ~ VLHC-1 ~ 4-4.5 B\$, EU accounting, no detectors, no contingency (for comparison LHC~2.5 B\$) Considering

- R&D, detectors, computing,....
- LHC is being paid till '10
- other physics (neutrinos ,p-decay, factories ...),

Either a problem of compatibility or long time scales ≥ 25 years

G. Altarelli

With tight resources and long time scales an efficient decision making would be needed.

Lack of adequate R&D funding is also a serious problem

But the large dimension of the projects need a world-wide collaboration which is difficult to aggregate

e.g. the slow evolution of the NLC case: it is vital to reach a consensus fast (or everything else will be blocked) P. Limon

The HEP Plan

- We do not have a viable strategy for the survival of HEP.
 - A global scrap over a linear collider does not constitute a strategy.
 - There has been some recent progress in formulating a path to a linear collider technology decision.
- We do not even have a plan to make a plan.
 - In the U.S., for example, the HEPAP recommendation to create a mechanism to formulate a coherent strategy has become the narrowly-focused P5.
- HEP must change the way it does things if it is going to survive!

Europe has a roadmap — L. Maiani, Sept '03

2. CERN future: LC & other projects

- It is not in the interest of Europe to offer a site for a subTeV LC
 - -LC is complementary to the LHC ... and is in the same energy range;
 - HEP is a global enterprise: other regions sharing efforts and benefits is crucial for its vitality;
 - Doing the LHC, Europe simply cannot afford being a major shareholder also for the LC.
- Europe should define soon the extent of its participation in a subTeV Int. LC
 - a minority participation (10 %?)
 - not all taken from CERN budget from 2011 onwards (!!) ...

CERN future: LC & other projects (cont'd)

- ... so as to allow intermediate scale projects to start, using the infrastructures in allied Labs (EU, Russia, US) and at CERN, which have been instrumental to build the LHC (+ ISTC?):
 - @ CERN: Superconducting Proton Linac (vs. β-beams, nucl. phys.);
 - — @ DESY: Free Electron Laser (Chem. and Biolog. applications) with TESLA technology.
- These projects will establish closer links between Accelerator Particle Physics and wide scientific communities:
 - BioChem (the dream of Björn Wiik)
 - and to Nucl. Phys. (as pioneered by Carlo Rubbia) ...
 - In addition to Data GRID.
- CERN has to participate in AstroParticle Physics projects (choose one !):
 - Space physics (as European basis for detector integration), e.g. EUSO
 - Deep Underwater Neutrino telescopes (NESTOR/ANTARES...)
 - Auger in Northern Hemisphere
 - ...??.

... in the longer term

- In 2009 (2007, if some extra resources are found) CTF3 will be able to tell if standing feasibility issues of CLIC can be solved (R1 issues);
- Around 2012 (2010), CERN should be able to launch a MultiTeV Global LC, based on CLIC technology;
- CLIC can be staged from lower energy (if no subTeV LC yet decided);
- The energy doubling of the LHC based on High Field Magnets may be a (alternative?) option to be seriously considered !
- Physics at the new facility could start around 2022-2027, i.e. about 15-20 years after the LHC commissioning

3. Summarising

🕗 i.e. Maiani's

My very personal conclusions:

• Default:

0.0.0

- LHC
- Lab consolidation
- LHC luminosity upgrade
- Active but restricted EU and CERN participation to subTeV LC,
- Intermediate projects (SPL, FEL) made in a coordinated way by a network of allied HEP Labs;
- CERN into AstroParticle (space? underwater?Auger2?...)

Prepare now for MultiTeV in the 2020's: CLIC - or LHCx2

Sept 16, 2003

This has caused a bit of a stir!

Altarelli does not represent Europe...

- We want the LC ASAP
- Some sentiment to wait for LHC
 - \Rightarrow We must address the question:

Why Now ?

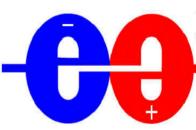
Our arguments must be based on Science

Back to Physics...

The LHC/LC Study Group

Led By:

- Georg Weiglein
- Frank Paige
- Rohini Godbole


Truly an international Effort ! ~ 200 Physicists involved

Collaboration of Hadron & Linear Collider Communities

http://www.ippp.dur.ac.uk/~georg/lhclc

Worldwide Study of the Physics and Detectors

for Future Linear e⁺ e⁻ Colliders

LHC/LC Study Group Charge

- Complementary Physics case established for the two machines -comparisons not helpful/needed
- Quantify interface between the two colliders:
 - Combined interpretation of LHC & LC data:

 $\mathsf{LHC} \oplus \mathsf{LC} > \mathsf{LHC} + \mathsf{LC}$

- Combined analyses of LHC & LC data:

 $\mathsf{LHC}\otimes\mathsf{LC}>\mathsf{LHC}\oplus\mathsf{LC}$

⇒ Demonstrate gain in knowledge with simultaneous operation

• Increase awareness of LHC experimenters of LC capabilities

LHC/LC Study Group Report Status

- First complete draft is finished
 - Individual contributions are in
 - Sections still in hands of editors
 - Executive summary in progress
- First presentation of material
 - Les Houches, EPS Aachen (Weiglein)
- Final report finished by ?? Still in question!

Please note that Georg's webpage was down yesterday!!
 ⇒ latest updates are not included here!

Outline of Report (+Editors):

- Introduction •
 - Experimental Aspects
 - Cosmic Connections
 - Executive Summary of Report Denegri, Gianotti, Richard, Schellman
- **Electroweak Symmetry** • **Breaking (Weakly)**

DeRoeck, Haber, Godboli, Weiglein

- Strong Electroweak SB • Barklow, Moenig
- Supersymmetry ٠

Desch, Kawagoe, Paige, Polesello

Now for some Highlights

- New Gauge Theories • Riemann
- Extra Dimensions • Hewett
- **Exotics** Gunion
- EW and QCD Precision Physics • Boos, Heinemeyer, Stirling

Improved Determination of b-quark pdf's

Single top-quark production

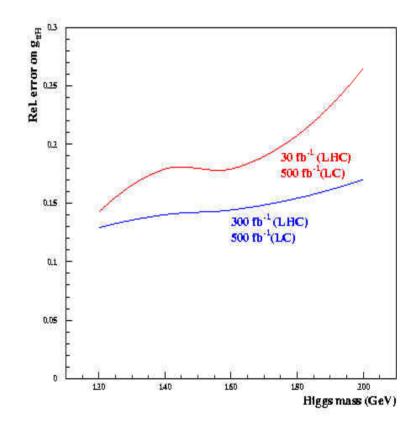
LHC: $qb \rightarrow q't, qg \rightarrow q't\overline{b}, q'q \rightarrow t\overline{b}, gb \rightarrow tW$ LC: $e^+e^- \rightarrow e^+\nu b\overline{t}, e\gamma \rightarrow \nu b\overline{t}$

Measures $|V_{tb}|$ to 7 % accuracy at LHC, e⁺e⁻ 1 % in e_γ

Improved accuracy in $|V_{tb}|$ could be input in LHC single top analysis \Rightarrow Measure b-quark distribution function in the proton

(or be used as consistency check for new interactions)

Improved Measurement of Higgs Couplings:

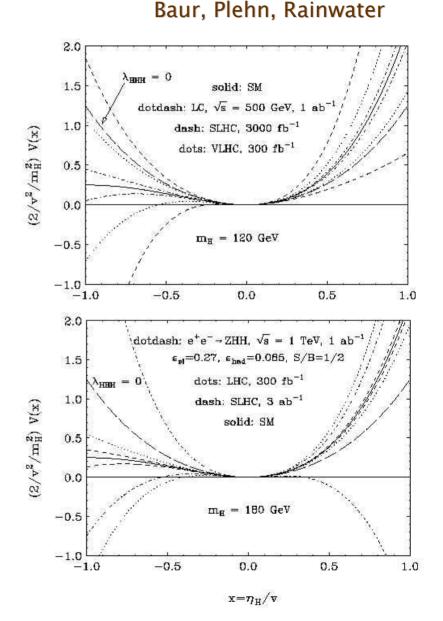

Top Yukawa

Dawson, Juste, Reina, Wackeroth; Desch, Schumacher

- Preliminary measurement of Top Yukawa at 500 GeV LC (~ 20-80%)
- Precision measurement requires higher energy at LC
- LHC measures $\sigma x BR$
 - Assumes Higgs decay is SM

\Rightarrow Combine LHC with precision LC higgs BR measurements

Requires NNLO QCD corrections (for both LHC & LC)


Reconstructing the Higgs Potential

$$V(\eta_{H}) = m_{H}^{2} \eta_{H}^{2} / 2 + \lambda v \eta_{H}^{3} + \tilde{\lambda} \eta_{H}^{4} / 4$$

Assume $\tilde{\lambda} = \lambda = \lambda_{SM} = m_{H}^{2} / 2v^{2}$

Higgs self-coupling determined with better accuracy at:

- LC for $m_H < 140 \text{ GeV}$
- LHC for $m_H > 140 \text{ GeV}$

LHC measurements improve with LC input on Higgs properties

Strong Electroweak Symmetry Breaking

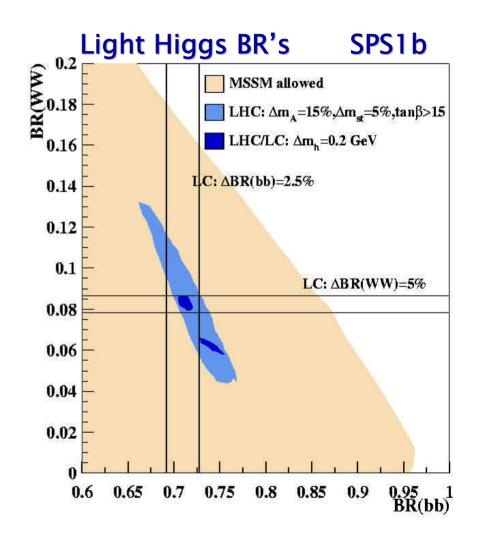
Arneodo, Barlow, Boogert, Cerminara, Kilian, Mariotti, Moenig, Osorio, Passarino

Available Processes

LHC: $pp \rightarrow jj + W^+W^$ $pp \rightarrow jj + W^{\pm}W^{\pm}$ $pp \rightarrow jj + ZZ$ $pp \rightarrow jj + W^{\pm}Z$ LC: $e^+ e^- \rightarrow v\bar{v} W^+ W^$ $e^+ e^- \rightarrow v\bar{v} ZZ$ $e^+ e^- \rightarrow e\bar{v} WZ$ $e^+ e^- \rightarrow e^+ e^- W^+ W^$ $e^+ e^- \rightarrow e^+ e^- ZZ$ $e^+ e^- \rightarrow v\bar{v} t\bar{t}$ $e^- e^- \rightarrow vv W^- W^-$

- ·LC can isolate both initial and final states \Rightarrow extract results from ZZ initiated processes in LHC data
- ·LHC observes direct resonance, LC observes resonance indirectly \Rightarrow LHC Direct determines mass, LC indirect determines width LHC \oplus LC determines spin

More work in progress...

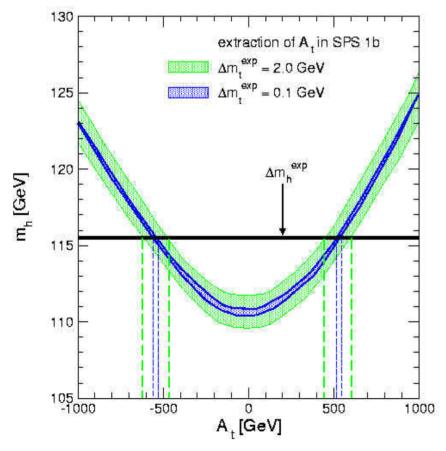

MSSM Higgs Sector : Consistency Check

Desch, Heinemeyer, Weiglein

- Described by 2 parameters at tree-level; more once radiative corrections are included
- Observe Heavy Higgs + stop + sbottom at LHC
- \Rightarrow Predict light h phenomenology

Cross-check at LC by direct measurement

Precision measurement of parameters important!

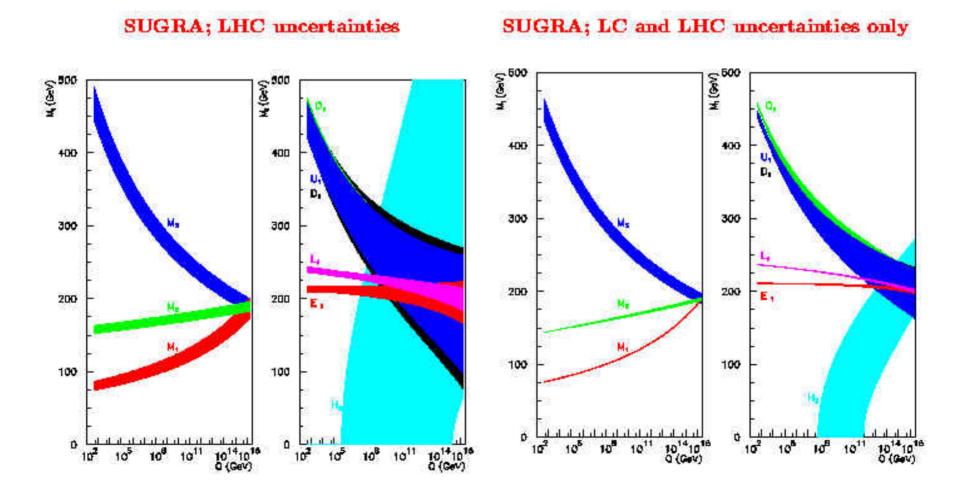


MSSM Higgs Sector: Indirect Determination of Att

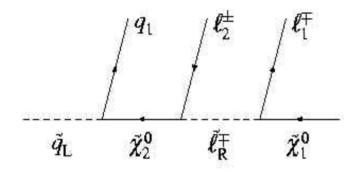

Desch, Heinemeyer, Weiglein

A_t Tri-linear term in soft SUSY-breaking Lagrangian

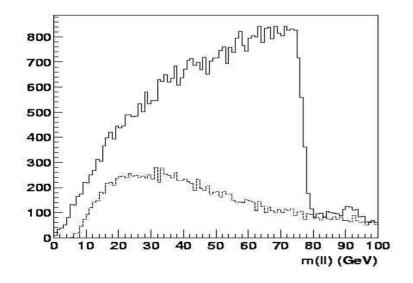
Precise Δm_t Crucial !



Precision BR measurement removes 2-fold ambiguity


Determination of SUSY parameters

Precision is important for evolution to the GUT scale !


Reconstruction of Sparticle Masses at LHC

Squarks and Gluinos have complicated decay chains

ATLAS and CMS have simulated SPS1a

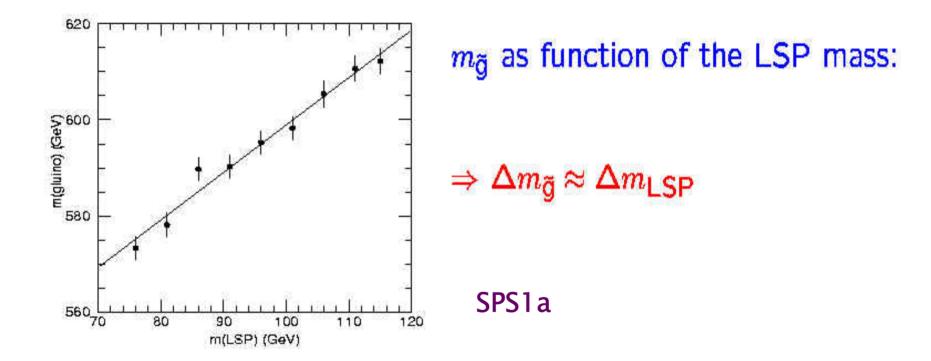
Main analysis tool: dilepton edge in $\chi^0_2 \rightarrow \chi^0_1 I^+ I^-$

Proportional to Sparticle mass differences

$$m_{ll}^2 = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

Introduces strong mass correlations

Mass of χ^{0}_{1} is largest source of systematic error @ LHC \Rightarrow Insert χ^{0}_{1} mass from LC !!


	LHC	LHC+LC (0.2%)	LHC+LC (1.0%)
$\Delta m_{ ilde{\chi}_1^0}$	9.2	0.2	1.0
$\Delta m_{ ilde{l}_R}$	9.2	0.5	1.0
	9.0	0.3	1.0
$\Delta m_{\tilde{b}_1}$	23.1	16.9	17.0
$\Delta m_{\widetilde{q}_L}$	15.0	5.1	5.3

Significant Improvement with LC input !

Gjelsten, Lykten, Miller, Osland, Polesello

For the gluino:

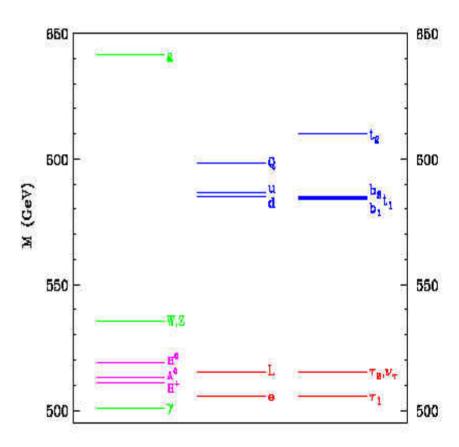

gluino \rightarrow squark + quark \rightarrow ...

Reconstruction of stop/sbottom masses and mixings

Hisano, Kawagoe, Nojiri

- Stop/Sbottom sector determined by 5 parameters
- Masses nominally measured @ LHC
- Measure tb invariant mass + rates of edge events
- Measure χ^{\pm} , χ^0 properties at LC and input into LHC edge analyses
- ⇒ ~ 50 % determination of stop/sbottom mixing angles

Universal Extra Dimensions: Bosonic SUSY

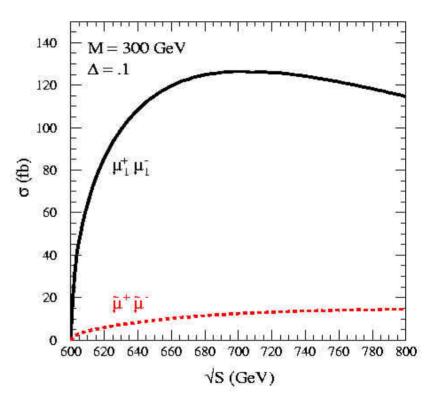

All SM fields in TeV⁻¹ 5-d Bulk KK-parity is conserved, (-1)ⁿ, due to 5-d momentum conservation ⇒ Lightest KK Particle (LKP) is stable: Dark Matter Candidate! Present data constrains R⁻¹ ≤ 300 GeV

LKP: Photon KK state appears as missing Energy

SUSY-like Spectroscopy

Confusion with SUSY if discovered @ LHC !

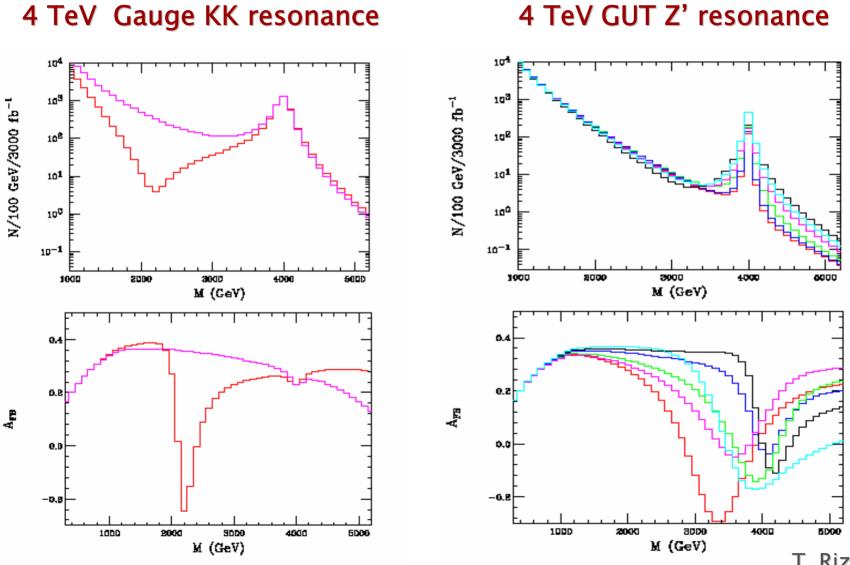
Spectrum looks like SUSY !



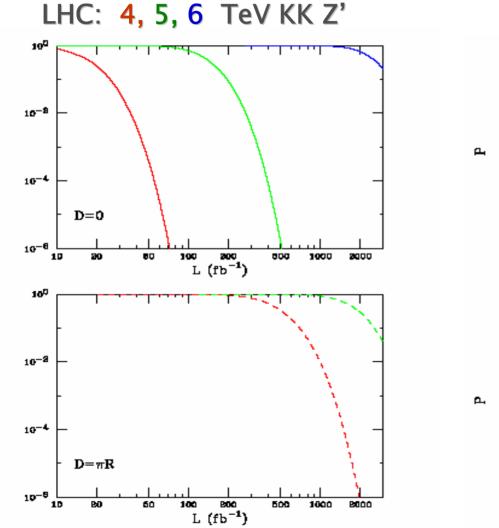
Chang, Matchev, Schmaltz

Observe KK states at LC:

Measure their spin via:

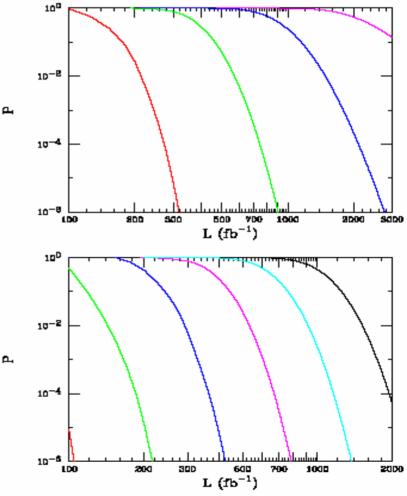

- •Threshold production, s-wave vs p-wave
- Distribution of decay products
- Could require CLIC energies...

JLH, Rizzo, Tait Datta, Kong, Matchev


Work in progress...

Distinguishing GUT Z' From KK Z'

T. Rizzo


Probability of fit to GUT Z' hypothesis with KK Z/γ States in Data Sample

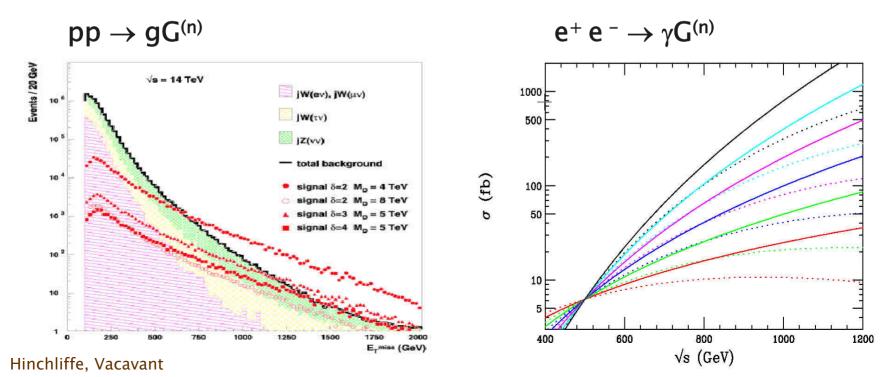
р.,

Ъ

LC: 4, 5, 6, 7, 8, 9 TeV KK Z'

Large Extra Dimensions: Parameter determination

- Examine Graviton Emission: $pp \rightarrow gG^{(n)}$, $e^+e^- \rightarrow \gamma G^{(n)}$
- LHC & LC have comparable search reach
- \Rightarrow Comparable capability to study the model


95 % CL sensitivity to fundamental scale M_D in TeV

$e^+e^- o \gamma + G_n$		2	4	6
LC	$P_{-,+} = 0$	5.9	3.5	2.5
LC	$P_{-} = 0.8$	8.3	4.4	2.9
LC	$P_{-} = 0.8, P_{+} = 0.6$	10.4	5.1	3.3
$pp ightarrow g + G_n$		2	3	4
LHC		4 – 8.9	4.5 – 6.8	5.0 - 5.8

- Model parameters: Fundamental scale M_D , # extra dims δ , Brane tension Δ
- Determined from energy dependence of cross section
- ⇒ Requires LC running at 3 widely separated \sqrt{s} Or Missing E_T Spectrum at LHC + 1 LC point for normalization

DeRoeck, Rizzo

Work in progress

LHC/LC Working Group Summary

- Improved determinations of b-quark pdf's
- Improved measurement of top Yukawa, Higgs self-coupling
- Improved determination of SUSY (SUSY Higgs) parameters (in particular, squark/gluino masses)
- Distinguish Universal Extra-Dims from SUSY
- Determine parameters of Large Extra Dims

Precision of LHC measurements improves with LC input Every Scenario benefits from simultaneous LHC \oplus LC running

Is this crisp enough ???

It's a good start...

LHC/LC interface is a rich field and will be further explored !

It's hard to call ~400 pages crisp!

(Can the LC influence the LHC upgrades? Requires very early turn-on)