Higgs Coupling Measurements at a 1 TeV LC

Tim Barklow SLAC October 9, 2003

Higgs Branching Fractions from TESLA TDR

Channel	$M_H = 120 \mathrm{GeV}$	$M_H = 140 \mathrm{GeV}$	$M_H = 160 \mathrm{GeV}$
$H^0/h^0 \rightarrow b\bar{b}$	± 0.024	± 0.026	± 0.065
$H^0/h^0 \rightarrow c \bar{c}$	± 0.083	± 0.190	
$H^0/h^0 \rightarrow gg$	± 0.055	± 0.140	
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050	± 0.080	

Table 2.2.5: Relative accuracy in the determination of Higgs boson branching ratios for $500 \, \text{fb}^{-1}$ at $\sqrt{s} = 350 \, \text{GeV}$.

Channel	$M_H = 120 \mathrm{GeV}$	$140{ m GeV}$	$160{ m GeV}$
$\sigma(e^+e^- \to H^0 Z)$	± 0.025	± 0.027	± 0.030
$H^0 \to WW^*$	± 0.051	± 0.025	± 0.021
$H^0 \rightarrow Z Z^*$			± 0.169

Table 2.2.3: Relative accuracy in the determination of the SM Higgs boson production cross-sections and decay rates into gauge bosons for $500 \, \text{fb}^{-1}$ at $\sqrt{s} = 350 \, \text{GeV}$ and $500 \, \text{GeV}$.

Higgs Branching Ratio B_x

$$B_{x} = \frac{N_{x} - L\sigma_{b}}{L\sigma_{Zh}\eta_{x}}$$

$$\frac{\Delta B_x}{B_x} = \left(1 - \frac{L\sigma_b}{N_x}\right)^{-1} \frac{\Delta N_x}{N_x} \oplus \frac{\Delta \sigma_{Zh}}{\sigma_{Zh}} \oplus \left(\frac{N_x}{L\sigma_b} - 1\right)^{-1} \frac{\Delta \sigma_b}{\sigma_b} \oplus \left(1 - \frac{L\sigma_b}{N_x}\right)^{-1} \frac{\Delta L}{L}$$

 $\frac{\Delta B_x}{B_x} \text{ cannot be less than } \frac{\Delta \sigma_{Zh}}{\sigma_{Zh}} = 2.4\%$

Higgs Γ_{tot}

$$\Gamma_{tot} = a \frac{(\sigma_{vvh} \cdot B_{b\overline{b}})}{B_{b\overline{b}} B_{WW*}}$$

$$\frac{\Delta\Gamma_{tot}}{\Gamma_{tot}} = \frac{\Delta(\sigma_{vvh} \bullet B_{b\bar{b}})}{(\sigma_{vvh} \bullet B_{b\bar{b}})} \oplus \frac{\Delta B_{b\bar{b}}}{B_{b\bar{b}}} \oplus \frac{\Delta B_{WW*}}{B_{WW*}}$$
$$\frac{\Delta(\sigma_{vvh} \bullet B_{b\bar{b}})}{(\sigma_{vvh} \bullet B_{b\bar{b}})} = 0.013 \quad \frac{\Delta B_{b\bar{b}}}{B_{b\bar{b}}} = 0.024 \quad \frac{\Delta B_{WW*}}{B_{WW*}} = 0.064 \Rightarrow \frac{\Delta\Gamma_{tot}}{\Gamma_{tot}} = 0.07$$

for $M_h = 115 \ GeV$ assuming $500 fb^{-1} @ \sqrt{s} = 350 - 500 \ GeV$

Take cue from Battaglia & DeRoeck results for $B_{h \to \mu\mu}$ at CLIC and investigate branching fraction measurements in WW fusion at a 1 TeV LC.

Event rates assuming $m_h = 115 \, GeV$

Higgs Γ_{tot} using $(\sigma_{vvh} \bullet B_{WW*})$ instead of B_{WW*}

$$\Gamma_{tot} = a \frac{(\sigma_{vvh} \bullet B_{b\overline{b}})^2}{B_{b\overline{b}}^2 (\sigma_{vvh} \bullet B_{WW})}$$

$$\frac{\Delta\Gamma_{tot}}{\Gamma_{tot}} = 2\frac{\Delta(\sigma_{vvh} \bullet B_{b\bar{b}})}{(\sigma_{vvh} \bullet B_{b\bar{b}})} \oplus 2\frac{\Delta B_{b\bar{b}}}{B_{b\bar{b}}} \oplus \frac{\Delta(\sigma_{vvh} \bullet B_{WW*})}{(\sigma_{vvh} \bullet B_{WW*})}$$

Optimize signal for $e^+e^- \rightarrow v_e v_e h_{|\to b\bar{b}}$ at 1 TeV

Require:

 $|\cos\theta_{thrust}| < 0.95$ $PT_{vis} > 20 \text{ GeV}$ $100 < E_{vis} < 500 \text{ GeV}$ $N_{isolated \ leptons} = 0$ $N_{jets} < 9$ $5 < N_{imp} < 20$ where N_{imp} is number of large impact parameter charged tracks

Use WHIZARD MC to Simulate All 0,2,4,6-Fermion Processes and Dominant 8-Fermion

SM Final States 0,2,4-Fermion

	0-fermion		
	$e^+e^- ightarrow$	$\gamma\gamma$	
		$\gamma\gamma\gamma$	
		$\gamma\gamma\gamma\gamma\gamma$	
		$\gamma\gamma\gamma\gamma\gamma\gamma$	
	2-fermion		
	$e^+e^- ightarrow$	ff	f eq u
		$ u u \gamma$	
		$ u u \gamma \gamma$	
		$ u u \gamma \gamma \gamma$	
	$e^-\gamma ightarrow$	$e^-\gamma$	
	$\gamma e^+ ightarrow$	$e^+\gamma$	
	4-fermion		.
	$e^+e^- ightarrow$	$\frac{\nu}{\nu}$	6 total
		$u_j d_j d_k \overline{u}_k$	25 total
			$\nu_e e^+ e^- \overline{\nu}_e$
			$\nu_e e^+ \mu^- \overline{\nu}_\mu$
			$\nu_e e^+ \tau^- \overline{\nu}_{\tau}$
			$ u_e e^+ d\overline{u}$
			•
Initial state v refers to both			·
	1		
beamstrahlung and bremsstrah	lung	$u_j \overline{u}_j u_k \overline{u}_k$	9 total
		$u_j \overline{u}_j d_k d_k$	25 total
		$d_j d_j d_k d_k$	21 total
	$\gamma\gamma \rightarrow$	ff	8 total
	$e_L\gamma ightarrow$	$\nu_e d_k \overline{u}_k$	5 total
	$e^-\gamma ightarrow$	$e^{-}ff$	10 total
	$\gamma e_R^+ ightarrow$	$\overline{\nu}_e u_k d_k$	5 total
	$\gamma e^+ ightarrow$	e^+ff	10 total

SM Final States 6-Fermion

6-fermion $e^+e^- \rightarrow - u_i \overline{u}_i u_j \overline{d}_j d_k \overline{u}_k$ 125 total $d_i \overline{d}_i u_j \overline{d}_j d_k \overline{u}_k$ 150 total $u_i \overline{u}_i u_j \overline{u}_j u_k \overline{u}_k$ 25 total $u_i \overline{u}_i u_j \overline{u}_j d_k \overline{d}_k$ 65 total Initial state γ refers to both $u_i \overline{u}_i d_j \overline{d}_j d_k \overline{d}_k$ 75 total $d_i d_i d_j d_j d_k d_k$ 56 total beamstrahlung and bremsstrahlung $u_j \overline{d}_j d_k \overline{u}_k$ 25 total $\gamma\gamma \rightarrow$ $u_i \overline{u}_i u_k \overline{u}_k$ 9 total $u_j \overline{u}_j d_k \overline{d}_k$ 25 total $d_j \overline{d}_j d_k \overline{d}_k$ 21 total $\begin{array}{lll} e_L^-\gamma \to & \nu_e u_j \overline{u}_j d_k \overline{u}_k & 25 \text{ total} \\ & \nu_e d_j \overline{d}_j d_k \overline{u}_k & 30 \text{ total} \\ e^-\gamma \to & e^- u_j \overline{d}_j d_k \overline{u}_k & 20 \text{ total} \end{array}$ $e^-u_j\overline{u}_ju_k\overline{u}_k$ 10 total $e^-u_i\overline{u}_id_k\overline{d}_k$ 20 total $e^{-}d_{j}\overline{d}_{j}d_{k}\overline{d}_{k}$ 21 total $\begin{array}{cccc} \gamma e_R^+ \to & \overline{\nu}_e u_j \overline{d}_j u_k \overline{u}_k & 25 \text{ total} \\ & \overline{\nu}_e u_j \overline{d}_j d_k \overline{d}_k & 30 \text{ total} \\ & \gamma e^+ \to & e^+ u_j \overline{d}_j d_k \overline{u}_k & 20 \text{ total} \end{array}$ $e^+ u_j \overline{u}_j u_k \overline{u}_k$ 10 total $e^+u_j\overline{u}_jd_k\overline{d}_k$ 20 total $e^+d_j\overline{d}_jd_k\overline{d}_k$ 21 total

SM Final States 8-Fermion

8-fermion

$e^+e^- ightarrow$	$f\overline{f}t\overline{t}$
$\gamma\gamma ightarrow$	$t\overline{t}$
$e^-\gamma ightarrow$	$e^-t\overline{t}$
	$\nu_e b \overline{t}$
$\gamma e^+ ightarrow$	$e^+t\overline{t}$
	$\overline{ u}_e t \overline{b}$

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $|\rightarrow b\overline{b}$

 $M_{h} = 115 \, GeV$

 $\sqrt{s} = 1 TeV$ $L = 2 ab^{-1}$

All 2,4,6-fermion and top-resonance 8-fermion backgrounds included

Background passing cuts (white histogram) is mostly

Red histogram: $h \rightarrow b\bar{b}$

Optimize signal for $e^+e^- \rightarrow v_e v_e h$ at 1 TeV $|\rightarrow WW^*$ **Require**: $|\cos\theta_{thrust}| < 0.95$ $20 \text{ GeV} < PT_{vis} < 500 \text{ GeV}$ $100 < E_{vis} < 400 \text{ GeV}$ $N_{isolated \ leptons} = 0$ $4 \le N_{iets} \le 5$ $16 \le N_{chro}$ $N_{imp} \leq 6$ where N_{imp} is number of large impact parameter charged tracks Perform Neural Net Analysis Using Above Variables and **Dot Products of Jet 4-Vectors**

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $|\rightarrow WW^*$

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

 $e^+e^- \rightarrow evW$ $(W\gamma \rightarrow ud)$

Red histogram: $h \rightarrow WW^*$ Blue histogram: $h \rightarrow gg$ Green histogram: $h \rightarrow b\overline{b}$

Visible Mass (GeV)

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $|\rightarrow WW^*$

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow evW$$

 $(W\gamma \rightarrow ud)$

Red histogram: $h \rightarrow WW^*$ Blue histogram: $h \rightarrow gg$ Green histogram: $h \rightarrow b\overline{b}$

Neural Net Variable

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

 $e^+e^- \rightarrow evW$ $(W\gamma \rightarrow ud)$ Red histogram: $h \rightarrow gg$

Blue histogram: $h \rightarrow WW^*$

Green histogram: $h \rightarrow b\overline{b}$

Neural Net Variable

Use ZZ fusion to measure Γ_{ZZ} Optimize signal for $e^+e^- \rightarrow e^+e^-h$ at 1 TeV using only the final state e^+e^- Take the largest mass e^+e^- pair in the event and require:

> $0.8 < \cos \theta_{e^-} < 0.9975$ $-0.9975 < \cos \theta_{e^+} < -0.8$ $|\cos \theta_{ee}| < 0.98$ $650 \text{ GeV} < M_{ee} < 870 \text{ GeV}$ $0.8 < a copl_{ee}$

 $e^+e^- \rightarrow e^+e^-h$

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

 $e^+e^- \rightarrow e^+e^-q\overline{q}$ $e^+e^- \rightarrow e^+e^-l^+l^$ $e^+e^- \rightarrow e^+e^-W^+W^-$

Red histogram: $e^+e^- \rightarrow e^+e^-h$

Missing Mass Opposite e^+e^- (TeV)

$$\sqrt{s} = 1TeV$$
 $L = 1000 fb^{-1}$ $m_h = 115 GeV$

$$\frac{\Delta \sigma_{vvh} \bullet B_{gg}}{\sigma_{vvh} \bullet B_{gg}} = 0.015$$

$$\frac{\Delta \sigma_{eeh}}{\sigma_{eeh}} = 0.029$$

x $B_{h \to b\bar{b}}$ $B_{h \to WW^*}$ Γ_{tot} $\Gamma_{h \to ZZ}$ $\Delta x / x$ without 1 TeV.024.064.070.024 $\Delta x / x$ with 1 TeV.017.027.039.018

$$e^+e^- \rightarrow v_e v_e h$$

 $\mid \rightarrow \gamma \gamma$

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow \nu\nu\gamma\gamma$$

Red histogram: $h \rightarrow \gamma \gamma$

$$\frac{\Delta \sigma_{vvh} \bullet B_{\lambda\lambda}}{\sigma_{vvh} \bullet B_{\lambda\lambda}} = 0.06$$

Visible mass (GeV

SUMMARY

Meas of $\sigma_{vvh} \bullet B_{WW^*}$ and σ_{eeh} at 1 TeV improves resolution for B_{WW^*} , $B_{b\bar{b}}$, Γ_{ZZ} , Γ_{tot}

Further improvement in resolution for Γ_{tot} might be achieved with a measurement of $\sigma_{eeh} \bullet B_{WW^*}$ using WW semileptonic topology

6% measurement of $B_{\lambda\lambda}$ can be achieved.

Improvements in charm and gluon BR's are also possible.