LC Background Requirements

- Introduction: background sources @ the LC IP
- **O Detector tolerance levels**
 - o naive detector model
 - o pain-threshold 'guesstimates'
- 'Some' open issues
 - **o** are the advertised tolerance levels reasonable? consistent?
 - o muons
 - Iost particles
 - o synchrotron radiation

• Conclusions

Beam-Beam Interaction at the LC IP

Beams attracted to each other reduce effective spot size and increase luminosity

•
$$H_D \sim 1.4 - 2.1$$

Pinch makes beamstrahlung photons:

- 0.9-1.6 γ/e^{-} with $E_{\gamma} \sim 3-9 \% E_{beam}$
- Photons go straight to the dump & are not a background source (at least by themselves)

Particles that lose a photon are off-energy

- Physics problem: luminosity spectrum
- Extraction line problem:
 - NLC 1 TeV design has 77 kW of beam with $E \le E_{nom}/2 \implies 4kW lost (0.25\% loss)$

Photons interact with opposing e, γ **to produce e⁺e⁻ pairs and hadrons**

Background Sources

IP Backgrounds

Beam-Beam Interaction

- o Disrupted primary beam
 - Extraction Line Losses
- o Beamstrahlung photons
- o e^+e^- pairs from beamstr., $\gamma\gamma$ interactions
- o h^{\pm}/n from beamstr., $\gamma\gamma$ interactions

• Radiative Bhabhas $(e^+e^- \rightarrow e^+e^- \gamma)$

W. Kozanecki

Background Sources

IP Backgrounds

Beam-Beam Interaction

- Disrupted primary beam
 - Extraction Line Losses
- o Beamstrahlung photons
- o e^+e^- pairs from beamstr., $\gamma\gamma$ interactions
- o h^{\pm}/n from beamstr., $\gamma\gamma$ interactions
- Radiative Bhabhas $(e^+e^- \rightarrow e^+e^- \gamma)$

Machine Backgrounds

- Muon production at collimators
- Direct Beam Loss (e[±] halo) near IP
- Synchrotron Radiation
- Collimator edge scattering
- Beam-Gas
- Neutrons from dumps/extrct'n line

Have been studied to death Scale with luminosity

- 1. Transport them away from IP
- 2. Shield sensitive detectors
- 3. Exploit detector timing

Our topic today

- 1. Don't make them
- 2. Keep them from IP if you do

A (very) naive detector-tolerance model

Subdetector	Tolerance criterion		
Vertex detector	Rad. damage (worst-case: CCD's) : < 3 10 ⁹ n cm ⁻²		
	Occupancy: < 1% (hit density)		
Time Projection Chamber	Occupancy: < 1% (hit density)		
Calorimeter	<pre>'Occupancy': < 1% (MIPs), or about < 100 GeV</pre>		
Muon system	< 1 per m ²		

Detector-response model (*)

(*) As per R. Settles et. al., TESLA St Malo workshop

Subdetector	Granularity	Sensitivity window	Fract'l sensitivity
Vertex detector (Layer 1)	20 μ x 20 μ pixels = 2500 pixels/mm ²	50 μs (1 NLC train / 150 TESLA bunches)	Chgd trks: ε = 1.0 (4 pixels) γ: ε = 0.02 (4 pixels)
TPC	1.5 10 ⁶ pads x 10 ³ time buckets = 1.5 10 ⁹ voxels		Chgd trks: $\varepsilon = 1.0$ (3 p x 200 r x 10 tb) γ : $\varepsilon = 0.02$ (3 p x 200 tb) n: $\varepsilon = 0.01$ (3 p x 200 tb) μ : $\varepsilon = 1.0$ (6 p x 1000 tb)
Calorimeter (excluding LAT/LCAL)	44,000 cells	~ 200 ns (or less?) (1 NLC train / 1 TESLA bunch)	E > 1 MIP (~ 250 MeV) Chgd trks: 1 MIP μ: 100 cells
Muon system	∼ 1 cm x 5 m ⊥ beam axis	1 NLC train / 1 TESLA bunch ?	Chgd trks: ε = 1.0

Background tolerance levels (*)

Unless otherwise stated, limits are expressed in # particles per sensitivity window (SW) (typically 150 bunches for TESLA, 1 train for NLC in VDET/TPC)

Subdetector	Chrgd tks	γ	n (~ 1 MeV)	μ	E
Vertex detector L1	6 mm ⁻²	300 mm ⁻²	3 10 ⁷ mm ⁻²	-	-
TPC	2500 (!?)	1.25 10 ^{6 a)}	2.5 10⁷	2500 (?)	-
Calorimeter	-	~ 40000	-	$\textbf{1\%} \Rightarrow \textbf{4}\mu$	400 MIPs
		(Ε _γ ~2.5 MeV)		[x10 ⁰]	(100 GeV?)
Muon system	leaking jets?	not ^{c)} an issue?	not ^{c)} an issue?	1 m ⁻²	leaking jets?

^{a)} NLC uses ~ $10^5 \gamma$ / train as a typical upper limit ^{b)} if the μ E deposition can be identified & subtracted in software ^{c)} Tunnel shine can presumably be shielded out with a sufficiently massive concrete plug

Important notes

- **1.** No generic answers depend strongly on subdetector technology
- 2. Only guesstimates so far. Real answer needs detailed simulations, pattern recognition studies, understanding of background distribution....
- 3. 1% may sound overconservative...but we need ~ x 10 safety factor!

Subdetector	Chrgd tks	γ	n (~ 1 MeV)	μ	E
Vertex detector L1	6 mm ⁻²	300 mm ⁻²	not a collimation issue	-	-
TPC	2500	1.25 10 ⁶	not a collimation issue	2500	-
Calorimeter	-	~ 40000	-	<u>4</u>	not a collimation
		(E _γ ~2.5 MeV)		(40?)	15540
Muon system	not a collimation issue	-	-	1 m ⁻²	not a collimation issue

'Typical' requirements

- > primary collimation efficiency must be good enough so that # μ's from secondary collimation system / FFS 'not dominant'
- > no synchrotron-radiation (SR) photon hits beam tube /mask/SVT 'near IP'
- no (< 1) high-energy e[±] hits beam tube /mask/SVT 'near IP' (i.e. within the Final Doublet or closer)

Some 'personal worries'

• The '<u>typical requirements</u>' above are

) based on experience....

'At SLD/SLC SR WAS a (THE?) PROBLEM' (TWM et. al.)

- SR from triplet WOULD have directly hit beam-pipe and VXD
- Conical masks were installed to shadow the beam pipe inner radius and geometry set so that photons needed a minimum of TWO bounces to hit a detector
- Quantitative measurements of background rates could be fit by a "flat halo" model where it was assumed that between 0.1% and 1% (in the early days) of the beam filled the phase space allowed by the collimator setting.
- but somewhat arbitrary, and not yet supported by quantitative detector studies (to my knowledge)

 It is important for the LC detector community to put them on a more robust basis. In addition, I would like to suggest a few 'sanity checks'...

Open issues & 'sanity checks'

o Muons

- Comparisons of muon yields (# e[±] lost / μ @ IP) at low & high c.m. energy (500 GeV vs. 800, 1000 or 3000 Gev) appear inconsistent across LC designs
- Secondary e[±] energy cutoff (> 50 GeV in A. Drozhdin's code) may be too high to realistically model 'harmful' μ production
- \odot tunnel modelling (wrt μ transport): a huge job by itself....
- Electromagnetic debris: production & transport
 - Is the showering in 'thin' machine elements (vacuum pipe, magnets) modelled with enough realism to be sure we are not overlooking potential problems?
 - ◎ High energy e[±] losses 'near' the IP:
 - what is reasonable tolerance level (TWM: 'a few ten per train"?)
 - how near is 'near' ?

See more recent results in T. Markiewicz's talk later today

How far upstream of the IP do electromagnetic debris matter ?

Can showers produced by full-energy e^{\pm} 10-20 m from the IP on the <u>incoming beam</u> side cause substantial backgrounds, in view of ?

Open issues & 'sanity checks'

Synchrotron radiation (continued)

- Lessons from existing detectors
 - **BaBar design: SR background dominated by tip-scattering**
 - **BELLE: 'fried' their first VDET by a combination of**
 - improperly masked incoming-beam SR (very soft X-rays from XYCORs)
 - hard SR backscattered from the first beam-pipe wall on outgoing side
 - Zeus + H1: SR much of it backscattered absorbs a large fraction of their 'background budget'

Conclusions

- Detector tolerance levels:
 - **o well-understood & under control for beam-beam sources**
 - still at the level of 'guesstimates' for incoming-beam backgrounds
 - detailed 'physics-performance' simulations are required to quantify what is acceptable
 - the '1 % occupancy limit' is probably adequate, at this stage, in most cases

○ Some open issues

- $\odot \mu$ tolerance criteria need to be consolidated
- o back- & edge- scattering of SR photons
 - are known to be a (serious) problem in (some) existing detectors
 - need to be modeled promptly, so we can
 - develop effective masking schemes
 - avoid overconstraining the collimation-system design

Acknowledgements

- 'Somebody' twisted my arm to give this talk, in spite of my attempt at passing it on to a more competent 'victim'...
- There are people in this room who have worked on backgrounds at a future LC quite a bit more than I have
- A lot of the material in this talk (whether conceptual or graphical) was originally produced by
 - Tom Markiewicz (as well as some of his NLC colleagues)
 - Ron Settles (as well as some other conveners of the TESLA detector study groups)