The LC and the Cosmos: Connections in Supersymmetry

Jonathan Feng UC Irvine

Arlington LC Workshop January 2003

Many Big Questions

• Baryogenesis

– Why is there more matter than anti-matter?

• Ultra-high Energy Cosmic Rays

- What are the highest energy particles detected?
- •
- Dark Matter
 - What is most matter made of?

Dark Matter

- We live in interesting times
 - We know how much dark matter there is
 - $(\Omega_{\rm DM} = 0.24 + 0.05)$
 - We have no idea what it is
- Weakly-interacting particles with weak-scale masses naturally provide $\Omega_{\rm DM}$
- This is either a devious coincidence, or dark matter provides a strong, fundamental, and completely independent motivation for new particles at the electroweak scale

Limitations of Separate Approaches

- Dark matter experiments cannot discover SUSY
 - can only provide rough constraints on mass, interaction strengths
- Colliders cannot discover dark matter – can only verify $\tau > 10^{-7}$ s, 24 orders of magnitude short of the age of the universe

Arlington LC Workshop

Relic Density

• Neutralino freeze out: sensitive to most SUSY parameters

- Co-annihilations
 Extreme sensitivity to degeneracies
- E.g., $\chi \tau$ co-annihilation requires mass measurements much better than

 $\Delta m \sim T \sim m/25$

• Requires full capabilities of LC (see Dutta's talk)

Relic Density

Extreme sensitivity to ulletRelic density regions and gaugino-ness contours neutralino mixing: 600 χ Ŵ 500 χ_i^+ M_{1/2} (GeV) χ 200 vanishes for pure Bino, (a) tanβ=10 (b) tanβ=50 even 10% gaugino-ness 100 500 1000 1500 2000 1000 1500 2000 2500 0 0 500 changes $\Omega_{\rm DM}$ drastically. m_o (GeV) m_o (GeV)

Feng, Matchev, Wilczek (2000)

- Many handles at colliders
 - LC: Polarized measurements of chargino pair production
 - LHC/LC: Mass measurements of all charginos and neutralinos

Feng, Murayama, Peskin, Tata (1995)

Dark Matter Detection

• Direct detection depends on χN scattering

 Indirect detection depends on χχ annihilation

> $\chi \chi \rightarrow \gamma$ in galactic center $\chi \chi \rightarrow e+$ in halo $\chi \chi \rightarrow$ anti-protons

• or both

 $\chi \chi \rightarrow \nu$ in centers of the Earth and Sun

Indirect Detection Experiments

TABLE I. Current and planned neutrino experiments. We list also each experiment's (expected) start date, physical dimensions (or approximate effective area), muon threshold energy E_{μ}^{thr} in GeV, and 90% CL flux limits for the Earth Φ_{μ}^{\oplus} and Sun Φ_{μ}^{\odot} in km⁻² yr⁻¹ for half-cone angle $\theta \approx 15^{\circ}$ when available.

Experiment	Type	Date Di	imensions	E_{μ}^{thr}	$\Phi^{\oplus}_{\mu} = \Phi$					
Baksan [65]		۵	Α		0					
Kamiokande [66 MACRO [67] Super-Kamioka Baikal NT-96 [6 AMANDA B-10	TABLE II. Some of the current and planned γ ray detector experiments with sensitivity to photon energies 10 GeV $\lesssim E_{\gamma} \lesssim 300$ GeV. We list each experiment's (proposed) start date and expected E_{γ} coverage in GeV. The energy ranges are approximate. For experiments constructed in stages, the listed threshold energies will not be realized initially. See the references for details.									
Baikal NT-200	Experiment		Type		Date	i	E_{γ} Rang	ge		
AMANDA II [7	EGRET [88]		Satellite		1991-2000		0.02 -	30		
NESTOR [§] [72]	STACEE [89]		ACT array	CT array 1998		20-300				
ANTARES [73]	CELESTE [90]		ACT array		1998		20-300			
IceCube [71]	ARGO-YBJ [91]	Air shower		2001		100-2,0	00		
* 2 CeV for Su	MAGIC [92]		ACT .		2001	,	10 - 10	00		
2 Gev for 5u	AGILE [93] HESS [94] AMS/γ [95] CANGARO	LE [93] S [94] TABLE III. Recent and planned e^+ detector experiments. We list each experiment's (expected) start date, duration, geometrical acceptance in cm ² sr, maximal E_{e^+} sensitivity in GeV, and (expected) total number of e^+ detected per GeV at $E_{e^+} = 50$ and 100 GeV.								
	VERITAS [Experiment	Type	Date	Duration	Acceptance	$E_{e^+}^{\max}$	$\frac{dN}{dE}(50)$	$\frac{dN}{dE}(100)$	
	GLAST [98]	HEAT94/95 [114]	Balloon	1994/	/95 29/26 hr	495	50		_	
		CAPRICE94/98 [[115] Balloon	1994/	/98 18/21 hr	163	10/30			
		PAMELA [116]	Satellite	2002-	5 Зуг	20	200	7	0.7	
		AMS-02 [117]	Space sta	ation 2003-	6 3 уг	6500	1000	2300	250	

Arlington LC Workshop

Dark Matter Detection

Observable	Type	Sensitivity	Experiment(s)
$\tilde{\chi}^{\pm}\tilde{\chi}^{0}$	Collider	See Ref. [5]	Tevatron: CDF, D0
$B \rightarrow X_s \gamma$	Low energy	$ \Delta B(B \rightarrow X_s \gamma) < 1.2 \times 10^{-4}$	BaBar, BELLE
Muon MDM	Low energy	$ a_{\mu}^{\rm SUSY} < 8 \times 10^{-10}$	Brookhaven E821
$\sigma_{ m proton}$	Direct DM	$\sim 10^{-8}$ pb (See Ref. [5])	CDMS, CRESST, GENIUS
ν from Earth	Indirect DM	$\Phi^{\oplus}_{\mu} < 100 \text{ km}^{-2} \text{ yr}^{-1}$	Amanda, Nestor, Antares
ν from Sun	Indirect DM	$\Phi^{\odot}_{\mu} < 100 \text{ km}^{-2} \text{ yr}^{-1}$	Amanda, Nestor, Antares
γ (gal. center)	Indirect DM	$\dot{\Phi_{\gamma}}(1) < 1.5 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$	GLAST
γ (gal. center)	Indirect DM	$\Phi_{\gamma}(50) < 7 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$	MAGIC
e^+ cosmic rays	Indirect DM	$(S/B)_{\rm max} < 0.01$	AMS-02

- Astrophysical and particle searches are complementary
- SUSY at LC500 requires some dark matter signal before ~2007 (in mSUGRA)
- Relic Density \rightarrow
 - scalars light or ____
 - Higgsinos light (neutralinos mixed)
 - Rich physics at LC

Feng, Matchev, Wilczek (2000)

January 2003

Arlington LC Workshop

Cosmo/Astro Inputs/Outputs

- Thermal relic density need not be the actual relic density late decays, etc.
 - The mismatch tells us about the history of the universe between 10 GeV > T > 1 MeV or 10⁻⁸ s < t < 1 s
- The detection rate need not be the actual detection rate
 - the mismatch tells us about halo profiles, dark matter velocity distributions
- LHC/LC not only required to identify SUSY, but also sheds light on "astrophysical" problems

Example: Halo profile at the galactic center

10-8

10-9

10-10

EGRET

AGILE

STACEE/

CELESTE

VERITAS

- Halo profiles are extremely poorly known (cuspy, clumpy, ...)
- An indirect dark matter signal is photons from the galactic center:

Arlington LC Workshop

200

superWIMPs

- WIMP motivations are strong, and suggest optimism for detection:
 weaker interactions → too much relic density
- But one can break this relation:
 - E.g., gravitino LSP, sneutrino NLSP
 - Sneutrino freezes out to WIMP density, then decays to roughly degenerate gravitino
 - gravitino is a superWIMP, interacts only gravitationally

Feng, Rajaraman, Takayama (2003)

Implications

- Dark matter escapes all dark matter experiments
- Astrophysical superWIMP detection depends on character of NLSP

v superWIMP

- CMB signature
- γ superWIMP
 - diffuse γ signature
 - BBN signature

e superWIMPs, q superWIMPs, ...

• Colliders see meta-stable massive charged particles, etc. provide invaluable information

Conclusions

- Dark matter and EWSB are independent motivations for new physics; both point to the weak scale
- Both colliders and dark matter experiments are required to get anywhere
- High sensitivity to SUSY parameters LC inputs are likely to be extremely valuable