Tracking: VXD and Forward

Norman A. Graf SLAC September 19, 2002

Problem Statement

- **❖** We wish to develop track-finding strategies for the forward (disk) regions and the central region in SD (axial-only measurements).
- *****For full understanding of the systematics we need to include realistic detector simulations.
 - Hit merging and ghosting!
- Occupancies need to include beam backgrounds
 - Largest source of hits in VXD!

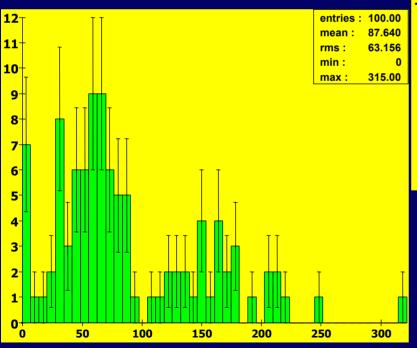
Central Tracking in SD

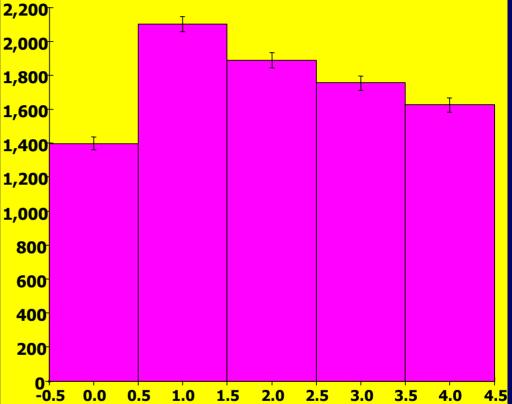
- *Find tracks in the 5-layer CCD pixel VXD, extrapolate outwards to pick up hits in the silicon μ-strip barrel.
 - Prompt tracks OK.
- Can also work back from clusters in the EM calorimeter
 - Know direction (and energy for EM showers)
- **Attempt to find 2D tracks in outer system.**
 - Small impact parameter tracks OK.

Tracking in VXD

- **❖**Pattern recognition for well-measured, separated 3D points is not a problem.
- **❖** Five layers provide sufficient redundancy.
- **❖**Need systematic studies of occupancies in high hit-density environments!
 - → Need to study backgrounds!
 - → Need to study hit merging!

Hit-Merging in VXD

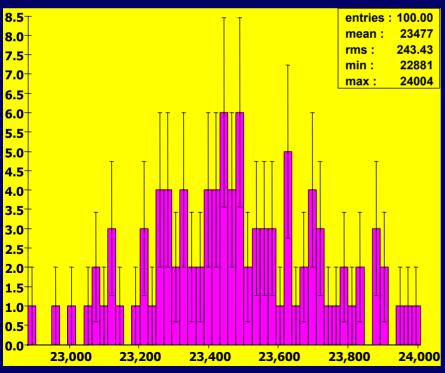

- Currently record exact position of MC track's intersection with sensitive volume in simulations.
- **❖Smear with expected measurement resolution**
 - Default is 5 microns.
- **❖**Hits are currently distinct, even when they are within a pixel (20 microns!).
- **❖** Real hits populate ~3×3 set of pixels.
- **❖**Needs further study to parameterize this!

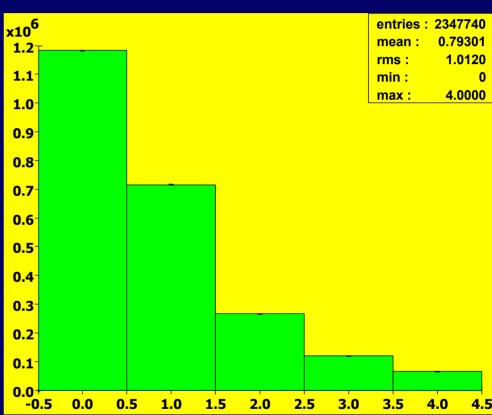

Adding Backgrounds

- **Backgrounds arising from pairs hitting the beampipe have been generated and passed through the full simulation packages.**
- One can overlay such events from 192 beam crossings onto signal events.
- *****Highest hit densities expected from e⁺e⁻→light quarks.

ee \rightarrow udscb $\sqrt{s}=500$ GeV

Number of VXD Hits





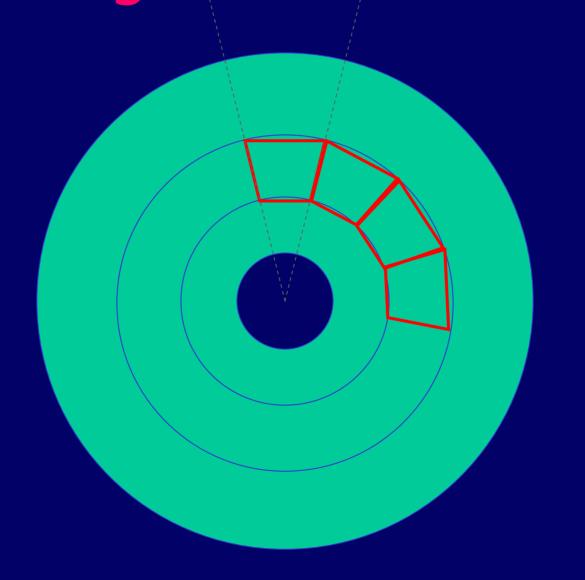
VXD Hits by Layer

ee-udscb + bunch train

Number of VXD Hits

VXD Hits by Layer

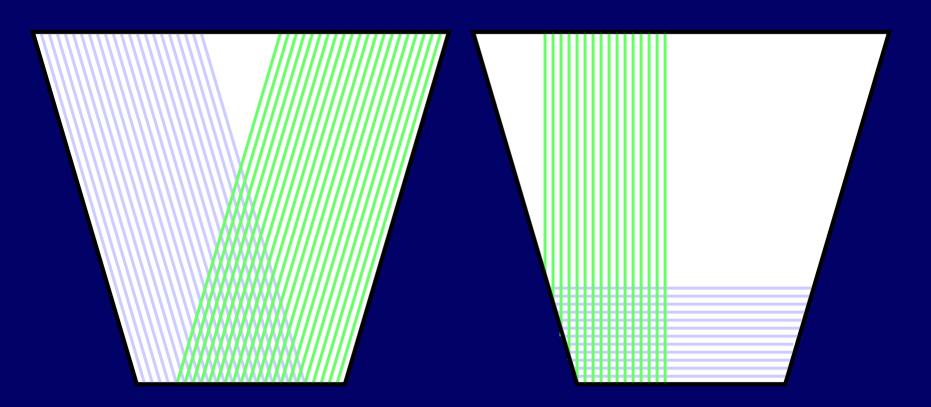
Forward Tracking


- *Associate strip hits (either double-sided or back-to-back single-sided) in wedges of z-disks to form 3D spacepoints.
 - Need systematic study of occupancies for various designs.
 - Can we survive the ghosts? Grow as $\sim n^2-n$.
- **Use pixel hits if available.**
- Detailed backgrounds needed!
- → Detailed hit merging and ghosting needed!

Forward Disk Detectors

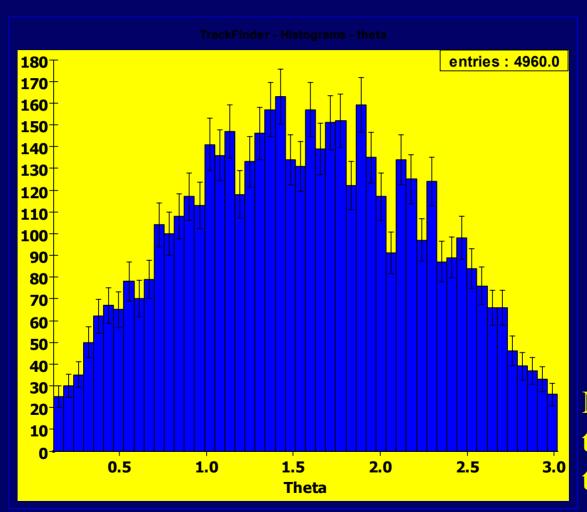
❖Many open issues:

- Mix of Si pixel and μ-strip detectors?
 - If pixel, APD or CCD?
- Tiling of disks with wafers.
 - Phi segmentation?
 - Radial segmentation?
- If μ-strip, double-sided or back-to-back?
- Strip orientations within wedges.
 - Shallow- or large-angle stereo?


Tiling Forward Disks

Strip Orientations

Shallow Angle Stereo


Large Angle Stereo

Pattern Recognition

- Conformal-mapping technique applied to 3D hits in VXD and forward disks.
 - Hits smeared by expected resolutions:
 - 5μ in rφ and z for CCD
 - 7μ in r and rφ for FWD
 - No hit merging!
 - No ghosts!
- **❖**Treat as combined system:
 - Find VXD-only tracks in central region.
 - Find VXD+FWD tracks in forward region.

single μ , 50GeV

Missing 40 tracks missed the detector.

Next Steps

- Will study increasingly more complicated events with increasingly more realistic detector layouts.
- **Currently developing flexible tools to study effects of disk tiling and strip orientations.**
- **❖Volunteers** needed!

Summary

- Strategies are being developed to handle pattern recognition in the forward disk regions and barrel axial-only detectors.
- **Detector digitization infrastructure is still** needed before systematic studies can be finished.
- *Recognize that detector design requires reconstruction input.
- *Aim for flexible framework to allow iteration.