

News and Directions

D. Burke

NLC "All Hands" September 2002

E158 and NLC Injector Beam Parameters

Parameter	E158	NLC-500	
Charge/Train	6 x 10 ¹¹ (*)	14.3 x 10 ¹¹	
Train Length	300ns	260ns	
Bunch spacing	0.3ns	1.4ns	
Rep Rate	120Hz	120Hz	
Beam Energy	45 GeV	8 GeV	
e ⁻ Polarization	80%	80%	

*Source has factor 5 overhead in charge.

Gradient-Doped Strained GaAs Photocathode

High Gradient Test Structures

1.8 m NLCTA Structure (DDS3)

 v_g from 12% to 3.3% c

53 cm Low v_g Test Structures			
	v_g from 5% to 3.3% c		
and	v_g from 3.3% to 1.6% c		
	(T53VG5 and T53VG3)		

High Gradient Test Structures (Partial List for Past 18 Months)

Test Structure	<u>L (m)</u>	V _g (% c)	Maximum Gradient ^a	Operation ^b
DDS3	1.8	12	50	40
T105VG5	1.0	5	70	60
T53VG5	0.5	5	80	65
T53VG3	0.5	3	90	70 (Spec)
T53VG3RA	0.5	3	80	70 (Spec)

(a) Unloaded gradient (MV/m) used during processing.

(b) Unloaded gradient (MV/m) at which cells operate satisfactorily.

 \rightarrow 6000 hours of high-power operation of the NLCTA.

RF Pulse Heating

Mode Conversion (MC) Coupler

Mode Conversion Coupler

High-Gradient R&D

Summary

- We are close to our goals.
- Test structures reach the design goal of 70 MV/m for a TeV collider ... but there are still issues to resolve in their manufacture and final design.
 - Starting to test structures with proper NLC apertures and wakefield detuning and damping, and working on designs to increase structure length. → Slide
 - Changes in manufacturing procedures have been identified to further improve performance. → Slide
 - Starting manufacture (CERN) of structures with irises made from harder materials (tungsten and stainless).
 - \rightarrow Continue to address these issues.

Wakefields and Accelerator Design (SLAC and KEK)

Wakefields – fields left by beam particles as they pass through the structure.

Control of transverse wakes ...

- "Detune" cells by giving each different transverse dimensions.

– "Damp" transverse wakefields by coupling to damping manifold and extracting power at frequencies above 11 GHz.

Structure RF BPMs –power extracted from horizontal and vertical damping manifolds.

SEM Survey of Structure Cells

Solid-State IGBT Modulator

Test Lab with "Dog" Loads

Periodic Permanent Magnet Focused (PPM) Klystrons

PPM Klystrons

Klystron Performance

Solenoid-Focused XL-4 (Workhorse NLCTA tubes – 10 in operation for 10 ⁴ hrs.)						
	75 MW	1.6µs	120 Hz			
SLAC Prototype Permanent Magnet Klystrons						
50 MW Design	50 MW	2.4 µs	120 Hz			
75 MW Design #1 (75XP1)	80 MW	2.8 µs	N/A (No PM cooling)			
75 MW Design #2 Serial #1 Serial #2	50 MW 40 MW	1.6 μs 1.6 μs	120 Hz			
Performance limited by gun arcing and unwanted rf oscillation at 11.7 GHz (source now understood).						
KEK Prototype Permanent Magnet Klystrons						
75 MW PPM2	70 MW	1.5 µs	25 Hz (Modulator limited)			
75 MW PPM3 [*] [*] PPM3 now in test and performance not yet limited by tube characteristics.						

NLC - The Next Linear Collider Project

Scientific, Political, and Organizational Activities

- Physics Imperative and Synergy Between Linear Collider and LHC
 - LCWS 2002 and World-Wide Study Group
 - \rightarrow Concurrent LC and LHC Physics!!
- Recent Reviews and Recommendations
 - PCAST and OSTP (President's S&T Policy Arm)
 - Redress underfunding of Physical Sciences.
 - HEPAP Report (ECFA and ACFA, too) and DOE 20-Year Outlook
 - The Linear Collider is in view.
 - TESLA and German Science Council Recommendations
 - Move aggressively on the FEL as a European project led by DESY.
 - Define a plan for an international collaboration on the linear collider.
- National and International Organization
 - U.S. Linear Collider Steering Group
 - International Linear Collider Steering Group

→ Organization by and of the scientific community.

 \rightarrow We hope advice is taken.

 \rightarrow We hope it's on the agenda.

Strategic View

- Steering Committees are moving to expedite technical decisions (read, "get our house in order") and to facilitate governmental action (read, "lobby").
- The need for "concurrent" running of the Linear Collider and the LHC to achieve the 20-year goal of understanding physics at the TeV energy scale is being recognized.
 - The HEPAP Report asked for start of construction in 2005.
- The NLC/JLC X-Band technology offers the tightest synergy and best match to the LHC energy reach. → Slide

Energy Reach of X-Band

Beam Loading

Beam loading is about 30% in the linac.

As the number of bunches is reduced the loaded gradient goes toward the unloaded gradient and the energy of the remaining bunches increases.

We are qualifying the **<u>unloaded</u>** accelerator gradient, so NLC/JLC can trade energy and luminosity over a wide range.

At 1.3 TeV cms the design luminosity of NLC/JLC is 5×10^{33} cm⁻² s⁻¹.

- There is compelling reason to establish the credibility of X-Band technology soon.
 - The DOE submits its FY06 budget request to OMB in April of 2004.
 - The German Science Ministry is expected to respond to the Science Council's recommendations at the end of next year (2003).
- Our R&D plan has been based on a 2-phased demonstration of

(i) Generation of a "Single-Feed" rf pulse with SLED-II compression powered by two klystrons in 2003.

(ii) Acceleration of beam in 5.4 - 10.8 meters of structures with DLDS pulse compression powered by an 8-Pack of klystrons in 2004.

• We must accelerate the demonstration of a complete X-Band rf system ... and we must do it with no increase in level of funding.

The NLC Test Accelerator

The NLCTA with 1.8 meter long accelerator structures (ca 1998).

Demonstrated capability to reach 500 GeV cms.

SLED RF Baseline

X-Band TeV SLED-II System

- Solid-state modulator
- 75 MW/1.6µs PPM klystrons
- Dual mode SLED-II pulse compression
- 6 x 0.9m DDS structures at 70 MV/m

Dual-Mode SLED II

Low-Power (Cold) Tests

Comparison with Snowmass 2001

- Klystron Pulse Length Halved
 - Twice as many klystrons and modulator sockets per unit energy.
- SLED-II vs DLDS Efficiency
 - Approximately 15% loss in power efficiency.
 - Site power increases.
 - Main Linac becomes 7-8 % longer.
 - Factor 4 reduction in the length of rf pipe.
- Guestimate is the cost for the machine increases 10% or so.

 \rightarrow A competitive machine with a core technology that can be demonstrated soon, and that we would be prepared to build if the opportunity is there to do so.

SLED-II Baseline Test

SLED-II Baseline Test

D. L. Burke

How It Looks Today

Strength of Collaboration

- Our Japanese colleagues are fully a part of this plan.
 - SLAC and KEK physicists on the ILC-TRC have together presented this common SLED-II Baseline design to the international community (this week in Hamburg).
 - KEK will provide klystrons and accelerator structures and participate in the SLED-II testing program.
- U.S. Collaborators working hard:
 - Bechtel-Nevada/LLNL work on modulators.
 - FNAL building accelerator structures.
 - LBNL and LLNL engineering and fabrication support.

Stay tuned.

Read the NLC News.

We will keep you up to date.