

Status of SPS1 Analysis at Colorado

Uriel Nauenberg for the Colorado Group

September 3, 2002

This discussion presents how the SUSY signals are observed above the background and the observed mass resolution after the background is removed.

The background considered is the full complement of SUSY background, the Standard Model WW background and 2 photon background where the two fast electrons have an angle < 20 mrads. We have not included the background from Beamstrahlung $\gamma\gamma$ collisions producing the appropriate final state particles.

We studied the SUGRA case with the SPS1 parameters given below. The parameters were agreed to by the International Collaboration.

 $M_0 = 100 \text{ GeV} \qquad M_{1/2} = 250 \text{ GeV} \\ A = -100 \qquad \tan(\beta) = 10 \\ \mu = 352.39$

The main characteristic of this point is due to the large value of tan (β) which leads to final states with τ 's and hence low energy tracks.

SPS Masses

		minimal SUGRA						GM	ASB	AMSB	
		SPS1	SPS2	SPS3	SPS4	SPS5	SPS6	SPS7	SPS8	SPS9	
\rightarrow	$\widehat{\chi}_{1}^{0}$	96.05	79.54	160.55	118.66	119.51	117.50	161.65	137.19	175.51	
\rightarrow	$\widetilde{\chi}_{2}^{0}$	176.82	135.34	296.95	218.14	226.33	215.54	260.06	252.33	549.03	
_́>	$\tilde{\chi}_3^0$	358.81	140.84	512.87	383.91	642.83	398.70	306.26	-404.00	874.37	Ις Λιετ
	$\tilde{\chi}_4^0$	377.81	269.45	529.57	401.08	652.95	418.06	379.94	426.28	875.97	ISAJLI
\rightarrow	$\widetilde{\chi}_1^+$	176.38	104.03	296.85	218.06	226.33	215.20	256.33	252.03	175.67	
	$\widetilde{\chi}_{2}^{+}$	378.23	269.03	529.51	402.28	652.68	418.19	379.45	426.47	877.22	
	h^0	113.97	115.71	116.95	115.39	119.79	114.71	113.57	114.83	114.83	D
	H^0	394.15	1444.10	573.03	404.63	694.03	457.84	378.37	515.01	912.56	Baer
	A^0	393.63	1442.95	572.42	404.43	693.86	457.26	377.89	-514.49	911.74	Duci
	H^+	401.77	1446.18	578.30	416.28	698.49	464.40	386.70	521.17	915.83	
~	$\widetilde{\nu}_{\phi}$	186.00	1454.17	275.99	441.22	244.52	243.25	249.06	347.61	309.71	Paige
\rightarrow	\tilde{e}_R	142.97	1451.69	178.33	416.54	191.45	191.30	127.43	175.87	303.01	1 4150
\rightarrow	\tilde{e}_L	202.14	1456.33	287.11	448.40	256.30	255.81	261.47	356.61	319.66	
<u> </u>	$\tilde{\tau}_1^-$	133.22	1439.46	170.59	267.61	180.67	184.34	120.45	169.42	271.28	Protononesc
	$\tilde{\tau}_2^-$	206.13	1450.38	289.22	414.91	257.86	258.31	263.40	357.59	322.54	riotopopese
	$\tilde{t_1}$	379.11	1003.88	623.83	530.58	220.74	474.12	779.09	957.65	1005.17	
	$\tilde{t_2}$	574.71	1307.41	819.54	695.88	644.65	659.73	863.00	1058.68	1128.80	'l'ata
	$\widetilde{b_1}$	491.91	1296.56	757.50	606.86	535.86	589.80	822.17	1021.90	1112.07	Lata
	$\widetilde{b_2}$	524.59	1520.09	791.35	706.45	622.99	623.42	843.35	1048.26	1232.88	
	$\widetilde{u_B}$	520.45	1530.08	791.78	715.10	624.49	621.87	830.54	1033.16	1227.35	
	$\widetilde{u_L}$	537.25	1532.70	816.57	730.24	641.82	638.97	859.66	1080.25	1218.09	
	\widetilde{g}	595.19	784.37	914.26	721.03	710.31	708.58	926.04	820.50	1275.18	

SUSY Masses

SUSY Cross Sections

NLC – The Next Linear Collider Project

SPS1 Cross Sections (fb)

	500 GeV		-750	GeV	1000 GeV	
	80% L	80% R.	80% L	80% R	80% L	80% R
$\widetilde{\chi}_1^0 \widetilde{\chi}_2^0$	107.	22.4	-81.0	15.9	55.3	10.6
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	2.76	13.6	2.04	8.1	1.21	4.38
$\widehat{\chi}_{1}^{0}\widehat{\chi}_{2}^{0}$	1.08	2.34	-5.17	-9.14	3.88	6.42
$\widehat{\chi}_{2}^{2}\widehat{\chi}_{2}^{2}$	138.	1.5.4	143.	16.0	1.04.	11.7
$\widetilde{\chi}_2^0 \widetilde{\chi}_3^0$			14.9	6.38	-8.91	4.04
$\tilde{\chi}_2^2 \tilde{\chi}_4^2$			-14.6	1.76	-14.2	1.7
$\hat{\chi}_3^0 \hat{\chi}_3^0$			-0.001	0.001	0.007	0.007
$\tilde{\chi}_3^0 \tilde{\chi}_4^0$			22.8	18.4	39.5	31.8
$\tilde{\chi}_4^0 \tilde{\chi}_4^0$					0.346	0.082
$\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	311.	35.4	325.	36.8	241.	27.3
$\widetilde{\chi_1} \widetilde{\chi_2}$			-34.6	8.74	23.6	5.86
$\widetilde{\chi_2} \widetilde{\chi_1}$			-34.7	8.74	23.7	5.86
$\widehat{\chi}_2^+ \widehat{\chi}_2^-$					1.36.	39.8
$\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-}$	80.2	544.	-70.9	520.	-54.0	414.
$\widehat{e}_{R}^{+}\widehat{e}_{L}^{-}$	150.	16.7	88.2	9.8	53.2	-5.91
$\widetilde{e}_L^+ \widetilde{e}_R^-$	16.8	1.51.	9.83	88.5	5.87	52.8
$\widehat{e}_L \widehat{e}_L$	105.	19.1	253.	38.2	253.	35.4
$\tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-}$	29.8	87.7	19.2	55.4	12.1	34.6
$\widetilde{\mu}_L^+ \widetilde{\mu}_L^-$	37.3	11.5	48.4	15.2	34.8	11.0
$\widehat{\tau}_{1}^{+} \widehat{\tau}_{1}^{-}$	36.0	88.8	21.9	53.1	13.6	32.8
$\widehat{\tau}_1^+ \widehat{\tau}_2^-$	1.63	1.3	1.27	1.01	0.832	0.661
$\widehat{\tau}_2^+ \widehat{\tau}_1^-$	1.62	1.29	1.26	1.00	0.832	0.661
$\overline{\tau_2}$ $\overline{\tau_2}$	30.7	11.1	43.6	16.0	31.9	11.8
$\widetilde{\nu}_{e}\widetilde{\overline{\nu}}_{e}$	928.	116.	1251	1.51.	-1071	1.27.
$\widetilde{D}_{\mu}\overline{\widetilde{D}}_{\mu}$	17.6	14.0	16.5	1.3.1	11.2	8.9
$\widetilde{D}_T \widetilde{D}_T$	17.9	14.2	16.6	13.2	11.2	8.91
$h^{0}Z^{0}$	66.0	52.5	26.6	21.1	14.5	11.5
$H^{0}A^{0}$					3.23	2.57
H^+H^-					9.51	3.01
$\widetilde{b}_1 \widetilde{b}_1$					0.252	0.03
$\widetilde{t}_1 \widetilde{t}_1$					9.53	8.92

ISAJET

Baer Paige Protopopescu Tata

• Selectron Mass Measurement New Method X 10 Resolution Improvement

The distribution in the next slide fairly much describes what we observe if we are looking at the final states that contain single leptons, like in the search for selectrons, sneutrinos, smuons, etc.

The large low momentum distribution is due to the large cross section for the 2 photon process

 $e^+ + e^- \rightarrow e^- + e^- + \gamma + \gamma \rightarrow e^+ + e^+ + e^-$ where the 2 e's are very forward and the lepton pairs are present in the detector.

INITIAL VIEW

Muon Energy for Signal Including Two Photon

The simulation of the background in the previous slide does not include the 2nd order processes shown in the next slide. Hence it is possible that the background in the energy region above 20 GeV might be larger. This needs to be corrected.

NLC – The Next Linear Collider Project

Positron Energy Spectrum $L^{+}L^{-}+R^{-}R^{+}+L^{-}R^{+}+L^{-}R^{+}+SUSY bkg$

Selectron Spectrum

NLC – The Next Linear Collider Project

Positron Energy Spectrum SUSY + W W + $\gamma^*\gamma^* \rightarrow e^+e^- + \tau \tau(e^+e^-)$

Colorado Univ. - Boulder

The mass of the SUSY particles depend on observing the minimum and maximum energy of the final state particle. The case discussed now is the selectron and neutralino. See one of our last slides showing the equations. In the distributions before this the edges are obscured by SUSY background channels. In the next slide where we take differences we get the correct edges because the background cancels out.

$Lum = 500 \text{ fb}^{-1}$								
Name	Input M	ass	Measured Mass					
	GeV			Ge	V			
\tilde{e}_{R}	143.00	No Bre	Brem m	141.57 146.3	$\pm 0.80 \\ \pm 0.8$			
$\mathbf{\widetilde{e}}_{\mathbf{L}}$	202.12	No Bre	Brem m	201.51 208.6	± 0.80 ± 0.8			
$\widetilde{\chi}^{0}_{1}$	96.05	No Bre	Brem m	95.4 99.9	± 4.0 ± 3.9			

1

Higher Neutralinos

NLC – The Next Linear Collider Project

Colorado Univ. - Boulder

Colorado Univ. - Boulder

(GeV)

E(Z0) GeV

Combined Mass of Two Leptons in Events

E(Z0) GeV

Colorado Univ. - Boulder

(GeV)

$$e^+ + e^- \rightarrow \tilde{v}_e + \tilde{v}_e$$

$$\widetilde{\nu}_{e} \rightarrow \widetilde{\chi}_{1}^{0} + \nu_{e} \quad 87.9\%$$

$$\tilde{v}_e \rightarrow \tilde{\chi}_1^+ + e^- 8.8\%$$

SUSY Cross Sections

NLC – The Next Linear Collider Project

SPS1 Cross Sections (fb)

	500 GeV		-750	GeV	1000 GeV	
	80% L	80% R	80% L	80% R	80% L	80% R
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	107.	22.4	-81.0	15.9	55.3	10.6
$\tilde{\chi}_1^2 \tilde{\chi}_3^2$	2.76	13.6	2.04	8.1	1.21	4.38
$\widehat{\chi}_{1}^{0}\widehat{\chi}_{1}^{0}$	1.08	2.34	5.17	9.14	3.88	6.42
$\tilde{\chi}_{2}^{2}\tilde{\chi}_{2}^{2}$	1.38.	15.4	143.	16.0	104.	11.7
$\widetilde{\chi}_2^0 \widetilde{\chi}_3^0$			14.9	6.38	-8.91	4.04
$\tilde{\chi}_2^2 \tilde{\chi}_4^2$			-14.6	1.76	14.2	1.7
$\widehat{\chi}_3^0 \widehat{\chi}_3^0$			0.001	-0.001	0.007	-0.007
$\widehat{\chi}_3^0 \widehat{\chi}_4^0$			22.8	18.4	39.5	31.8
$\tilde{\chi}_4^2 \tilde{\chi}_4^2$					0.346	0.082
$\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	311.	35.4	325.	36.8	241.	27.3
$\widehat{\chi}_1^+ \widehat{\chi}_2^-$			34.6	8.74	23.6	5.86
$\widetilde{\chi_2} \widetilde{\chi_1}$			34.7	8.74	23.7	5.86
$\widetilde{\chi}_2^+\widetilde{\chi}_2^-$					1.36.	39.8
$\widetilde{e}_R^+ \widetilde{e}_R^-$	80.2	544.	70.9	520.	54.0	414.
$\widetilde{e}_R^+ \widetilde{e}_L^-$	1.50.	16.7	88.2	9.8	53.2	5.91
$\widetilde{e}_L^+ \widetilde{e}_R^-$	16.8	151.	9.83	88.5	5.87	52.8
$\overline{e_L} \overline{e_L}$	105.	19.1	253.	38.2	253.	35.4
$\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$	29.8	87.7	19.2	55.4	12.1	34.6
$\widetilde{\mu}_L^+ \widetilde{\mu}_L^-$	37.3	11.5	48.4	1.5.2	34.8	11.0
$\widetilde{\tau}_1^+ \widetilde{\tau}_1^-$	36.0	88.8	21.9	53.1	13.6	32.8
$\widehat{\tau}_1^+ \widehat{\tau}_2^-$	1.63	1.3	1.27	1.01	0.832	0.661
$\hat{\tau}_2^+ \hat{\tau}_1^-$	1.62	1.29	1.26	1.00	0.832	0.661
$\overline{\tau_2}^+ \overline{\tau_2}^-$	30.7	11.1	43.6	16.0	31.9	11.8
$\widetilde{\nu}_{e}\widetilde{\overline{\nu}}_{e}$	928.	116.	1251	1.51.	-1071	127.
$\widetilde{\nu}_{\mu}\overline{\widetilde{\nu}}_{\mu}$	1.7.6	14.0	16.5	13.1	11.2	8.9
$\widetilde{D}_T \overline{D}_T$	1.7.9	14.2	16.6	13.2	11.2	8.91
$h^0 Z^0$	66.0	52.5	26.6	21.1	14.5	11.5
H^0A^0					3.23	2.57
H^+H^-					9.51	3.01
$\widetilde{b}_1 \widetilde{b}_1$					0.252	0.03
$\overline{t_1} \overline{t_1}$					-9.53	8.92

ISAJET

Baer Paige Protopopescu Tata

Colorado Univ. - Boulder

Search Procedure for Electron Sneutrinos

Plot energy distribution of e^{\pm} when we have only an e and μ Selectron and Smuon background removed Except for Left Selectrons, Smuons that Decay into a Neutrino and Chargino and

Chargino decays into Staus or Taus.

Only
$$\gamma^* \gamma^* \rightarrow \tau^+ \tau^-$$
 and $e \ e \ \rightarrow WW$ remain

Use µ energy spectrum to remove e background

80% Left Pol., Lum - 500 fb⁻¹

Colorado Univ. - Boulder

Electron Sneutrinos

μ Energy Spectrum

Electron Sneutrinos

P=80% L

NLC – The Next Linear Collider Project

Energy Spectrum of e's from eµ events

After **µ** Spectrum Subtraction

NLC -	Sneutrino	Mass Results Project	CJ.
	Elow	Ehigh	
No Brem	$\textbf{4.11} \pm \textbf{.04}$	$21.10 \pm .09$	GeV
Brem	$\textbf{4.22} \pm \textbf{.08}$	$20.40 \pm .12$	GeV
	Masse	s (GeV)	
	$\mathbf{M}_{\widetilde{\mathbf{v}}}$	$M\tilde{\chi}^{\pm}_{1}$	
Input	186.00	176.38	
No Brem	$\textbf{184.7} \pm \textbf{0.7}$	175.1	
Brem	$\textbf{188.4} \pm \textbf{0.7}$	178.9	

Total Electron Spectrum

Total Muon Spectrum

From $\gamma^*\gamma^* \rightarrow \tau\tau \rightarrow e\mu\nu\nu\nu\nu$

NLC – The Next Linear Collider Project

From Sneutrinos

e⁺/e⁻ - SM μ Energy Spectrum Pt (e+ μ) > 6 GeV; E (e or μ) < 50 GeV

Colorado Univ. - Boulder

Colorado Univ. - Boulder

$$e^+e^- \rightarrow \tilde{\mu}_L \tilde{\mu}_L + \tilde{\mu}_R \tilde{\mu}_R$$

Signal
$$\mu^+ \mu^-$$

Backgrounds
$$W \ W \ Decays \ into \ \mu$$

$$\gamma^* \gamma^* \rightarrow \mu \ \mu$$

e e $\rightarrow \tau \tau \ or \ \tilde{\tau} \ \tilde{\tau}$
e e $\rightarrow \tilde{\nu}_\mu \ \tilde{\nu}_\mu$

Smuon Backgrounds

NLC – The Next Linear Collider Project

Muon Energy versus Angle

WW Background Reduction

Remove events with energy of either muon ≥ 200 GeV

Remove events with muons in the energy vs θ band

$\tau \, \tau \, \text{Background}$

Rough cut at present

μ Energy Spectrum Pol=80%L, Lum=500 fb⁻¹

$A \rightarrow B + C$

$$M_{A} = E_{cm} \left\{ \frac{E_{c}(\min) E_{c}(\max)}{\{E_{c}(\min) + E_{c}(\max)\}} \right\}^{1/2}$$

 $M_{B} = M_{A} \{ 1 - 2 [E_{c}(min) + E_{c}(max)] \}^{1/2}$ E_{cm}

$$\delta$$
 (M) \approx 0.35 δ (E_{cm})

The large number of low energy events is due to the 2 photon background. This can be removed by having a detector in the very forward region that detects all tracks with angles > 20 mrad to the beam direction. Then requiring that the Pt of the tracks in the detector add to > 10 GeV removes this background. In the case of the e μ final state the 2 vs from the τ decay makes this limit more diffuse.

Restricting to lower than 20 mrad is useful to reduce this background. This should be an R&D effort.

SUSY masses can be measure to a fraction of 1 GeV in a few cases and to about 1 GeV in the others.

The tracker should measure momenta to about 1 GeV or better. This leads to similar errors in the mass due to an uncertainty of 0.5% in the center of energy.

