First Look at 2 ab^{-1} SM MC Data Sample at $\sqrt{s} = 1$ TeV

August 13, 2002

Tim Barklow

Monte Carlo Production

WHIZARD is used to generate all of the SM processes $e^+e^- \rightarrow f_1f_2$, $f_1f_2f_3f_4$, and $f_1f_2f_3f_4f_5f_6$ including ISR & beamstrahlung (CIRCE).

Goal is to generate 2000 fb⁻¹ MC data at $\sqrt{s} = 0.5, 0.8, 1.0, 1.2, \text{ and } 1.5 \text{ TeV}.$

100% electron and positron polarization is always assumed in event generation. Arbitrary electron/positron polarization is simulated by combining e_L^-/e_R^+ , e_R^-/e_L^+ , ... data sets.

Fully fragmented MC data sets are produced. PYTHIA is used for final state QED and QCD parton showering, as well as for fragmention and decay.

0-fermion

$e^+e^- ightarrow$	$\gamma\gamma$	
	$\gamma\gamma\gamma$	
	$\gamma\gamma\gamma\gamma\gamma$	
	$\gamma\gamma\gamma\gamma\gamma\gamma$	
2-fermion		
$e^+e^- ightarrow$	ff	f eq u
	$ u u \gamma$	
	$ u u \gamma \gamma$	
	$ u u \gamma \gamma \gamma$	
$e^-\gamma ightarrow$	$e^-\gamma$	
$\gamma e^+ ightarrow$	$e^+\gamma$	

4-fermion

$e^+e^- ightarrow$	$\gamma u v v v \gamma$	6 total
	$u_{j}\overline{d}_{j}d_{k}\overline{u}_{k}$	$25 \mathrm{total}$
	0 0	$ u_e e^+ e^- \overline{ u}_e$
		$ u_e e^+ \mu^- \overline{ u}_\mu$
		$ u_e e^+ au^- \overline{ u}_ au$
		$ u_e e^+ d\overline{u}$
		•
		•
		$c\overline{s}s\overline{c}$
	$u_j\overline{u}_ju_k\overline{u}_k$	9 total
	$u_j\overline{u}_jd_k\overline{d}_k$	$25 \mathrm{total}$
	$d_j\overline{d}_jd_k\overline{d}_k$	21 total
$\gamma\gamma ightarrow$	$f\overline{f}$	8 total
$e_L^-\gamma ightarrow$	$oldsymbol{ u}_e oldsymbol{d}_k \overline{oldsymbol{u}}_k$	5 total
$e^-\gamma ightarrow$	$e^-f\overline{f}$	10 total
$\gamma e_R^+ ightarrow$	$\overline{oldsymbol{ u}}_e u_k \overline{oldsymbol{d}}_k$	5 total
$\gamma e^+ ightarrow$	$e^+f\overline{f}$	10 total

SM Final States 6-Fermion

6-fermion

$e^+e^- ightarrow$	$u_i\overline{u}_iu_j\overline{d}_jd_k\overline{u}_k$	125 total
	$d_i\overline{d}_iu_j\overline{d}_jd_k\overline{u}_k$	150 total
	$u_i\overline{u}_iu_j\overline{u}_ju_k\overline{u}_k$	25 total
	$u_i\overline{u}_iu_j\overline{u}_jd_k\overline{d}_k$	65 total
	$u_i\overline{u}_id_j\overline{d}_jd_k\overline{d}_k$	75 total
	$d_i\overline{d}_id_j\overline{d}_jd_k\overline{d}_k$	56 total
$\gamma\gamma ightarrow$	$u_j\overline{d}_jd_k\overline{u}_k$	25 total
	$u_j\overline{u}_ju_k\overline{u}_k$	9 total
	$u_j\overline{u}_jd_k\overline{d}_k$	25 total
	$d_j\overline{d}_jd_k\overline{d}_k$	21 total
$e_L^-\gamma ightarrow$	$ u_e u_j \overline{u}_j d_k \overline{u}_k$	25 total
	$ u_e d_j \overline{d}_j d_k \overline{u}_k$	30 total
$e^-\gamma ightarrow$	$e^-u_j\overline{d}_jd_k\overline{u}_k$	20 total
	$e^-u_j\overline{u}_ju_k\overline{u}_k$	10 total
	$e^-u_j\overline{u}_jd_k\overline{d}_k$	20 total
	$e^-d_j\overline{d}_jd_k\overline{d}_k$	21 total
$\gamma e_R^+ ightarrow$	$\overline{ u}_e u_j \overline{d}_j u_k \overline{u}_k$	25 total
	$\overline{ u}_e u_j \overline{d}_j d_k \overline{d}_k$	30 total
$\gamma e^+ ightarrow$	$e^+u_j\overline{d}_jd_k\overline{u}_k$	20 total
	$e^+u_j\overline{u}_ju_k\overline{u}_k$	10 total
	$e^+u_j\overline{u}_jd_k\overline{d}_k$	20 total
	$e^+ d_j \overline{d}_j d_k \overline{d}_k$	21 total

SM Final States 8-Fermion

8-fermion

$e^+e^- ightarrow$	$f\overline{f}t\overline{t}$	
$\gamma\gamma ightarrow$	$t\overline{t}$	
$e \ \gamma ightarrow$	$e~~tt onumber u_e b \overline{t}$	
$\gamma e^+ ightarrow$	$e^+ t \overline{t} \ \overline{ u}_e t \overline{b}$	

WHIZARD MC uses the CompHEP convention for particle names, and we use them as well when specifying processes:

St.Model(Feyr	1.gau	uge)					
Particles							
Full name	P	aF	2*spin	mass	width	color	aux
photon	A	A	2	0	0	1	G
gluon	G	G	2	0	0	8	G
electron	e1	E1	1	0	0	1	
e-neutrino	n1	N1	1	0	0	1	L
muon	e2	E2	1	Mm	0	1	
m-neutrino	n2	N2	1	0	0	1	L
tau-lepton	e3	E3	1	Mt	0	1	
t-neutrino	n3	N3	1	0	0	1	L
u-quark	u	U	1	0	0	3	
d-quark	d	D	1	0	0	3	
c-quark	c	C	1	Mc	0	3	
s-quark	s	S	1	Ms	0	3	
t-quark	t	T	1	Mtop	wtop	3	
b-quark	b	B	1	Mb	0	3	
Higgs	H	H	0	MH	WH	1	
W-boson	W+	W-	2	MW	WW	1	G
Z-boson	Z	ΙZ	2	MZ	ΙwΖ	1	G

As a first test of interfacing a detector simulation program to this MC data set I used the ECFA/DESY fast MC program SIMDET. I made small modifications to only 1 subroutine in SIMDET:

```
timb@born2 $ diff sipyth.F $A6F/Simdet/simdet/code_f/sipyth.F
56,63d55
<
        if(ifpyth.eq.3) then
<
<
        call upinit(nevent,decm)
<
<
        ecms=decm
<
        else
<
<
321,323d312
<
<
        endif
<
334,342d322
<
           if(ifpyth.eq.3) then
<
<
              call upevnt
              IF (IFBKGR.NE.O .AND. BKGEVT.GT.O.) THEN
                                                             ! plus background
<
<
                 CALL HADES
<
              END IF
<
<
            else
<
421,422d400
<
           end if
<
476,477d453
        if(ifpyth.eq.3) call upprt
<
<
```

Polarization, \sqrt{s} , and specific processes are defined in whizdata.in:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
data_root = '/nfs/mstore/g/lcddata/'
i_sqrts = 1000
luminosity = 2000.
n_events_max=120000
mbyte_max = 200.
pol_eminus = -1.0
pol_eplus = 1.0
seed = 520027
output_events = F
process =
  "e1,E1
          q,q,q,q"
  "e1,E1 l,q,l,q"
  "e1,E1 l,v,l,v,q,q"
  "e1,A f,l,l,q,q"
"e1,A e1,e1,E1,e2,E2"
/
```

where q,l,v,f,x are defined as:

q=u,d,s,c,b,U,D,S,C,B l=e1,e2,e3,E1,E2,E3 v=n1,n2,n3,N1,N2,N3 f=q,l,v x=f,A e3=e3,E3 E3=E3

To read out all generated MC data:

To read out $t\overline{t}$ events:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
data_root = '/nfs/mstore/g/lcddata/'
i_sqrts = 1000
luminosity = 3000.
pol_eminus = -0.8
pol_eplus = 0.5
seed = 520033
process =
   "e1,E1    b,b,f,f,f,f"
/
```

To read out ZH events:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
data_root = '/nfs/mstore/g/lcddata/'
i_sqrts = 1000
luminosity = 3000.
pol_eminus = -0.8
pol_eplus = 0.5
seed = 520033
process =
  "e1,E1 b,b,f,f"
  "e1,E1 e3,e3,f,f"
/
```

MC Limitations

- Improper treatment of final states with identical quarks such as $u\overline{u}d\overline{d}$. This is a parton-level generation problem as well as a fragmentation problem, and is due to a deficiency in the OMEGA amplitude calculation program. Eventually it will be fixed by the OMEGA author; in the meantime the parton-level problem can be corrected in principle with reweighting. The size of the effect is unknown, but should only be an issue in non-resonant phase space regions.
- Events are not completely unweighted. There is a wide range in cross sections, and we cannot, for example, generate an equivalent number of Bhabha's if we generate 2000 fb⁻¹ of $e^+e^- \rightarrow u\overline{u}d\overline{d}s\overline{s}$. If you restrict yourself to high-pt central events, then the event sample will be unweighted. However, as you go out to the forward region you will eventually encounter some events with weight greater than 1 (bhabhas, $\gamma\gamma$ events). Thus one should always consider the event weight which is returned in PYTHIA variable PARI(7) in common PYPARS.
- Top quark final state spin correlations missing in 8fermion production. WHIZARD is used to generate processes such as $e^+e^- \rightarrow f\overline{f}t\overline{t}$ without t quark decay. Hence final state spin correlations are missing. Also the t quark has 0 width.

SM MC Production Status as of June 18 2002

- Except for some very high cross section process, event generation for 0-2-4 fermion processes at $\sqrt{s} =$ 1000 GeV is complete.
- Integration of 6 fermion processes at $\sqrt{s} = 1000 \text{ GeV}$ is nearly complete.
- MC data sets are currently stored on MSTORE mass storage, with estimated 1.5 Terabytes storage per \sqrt{s} point. External pythia process will handle all the MSTORE details for you.
- Good progress on writing code for external pythia process that interprets input file and reads out MC data. Should be ready about a week after Santa Cruz workshop.

SM MC Production Status as of August 13 2002

- Event generation for all 0-2-4-6 fermion processes at $\sqrt{s} = 1000$ GeV is complete.
- 8-fermion production is being held up by some complications involving t-quark decay in PYTHIA, but these issues will be resolved shortly.
- MC data sets are currently stored on MSTORE mass storage, arranged in 7216 stdhep files with a grand total storage of 3.05 Terabytes for the $\sqrt{s} = 1$ TeV data set. 0-2-4-fermion processes are contained in 2207 files and use 2.85 Terabytes while 6-fermion processes are contained in 5009 files and use 0.20 Terabytes.
- Code to interpret whizdata.in input file and to read out MC data seems to be working and the system has been successfully interfaced to the ECFA/DESY fast MC program SIMDET. It should be relatively straightforward to interface the data set to other detector simulation programs and analysis packages.

Sample analysis of $e^+e^- \rightarrow \mu^+\mu^-b\overline{b}$

Use the following cuts:

- Require $E_{vis} > 850 \text{ GeV}$
- Require $|\cos \theta_{\mathrm{thrust}}| < 0.8$
- Require two isolated muons with invariant mass between 82 and 100 GeV.
- Remove isolated muons and require that remaining system contain at least 6 charged tracks with momentum greater than 2 GeV and impact parameter greater than 3σ .

SIMDET MC and cuts to isolate $\mu^+ \mu^- b \bar{b}$ with Evis \approx Ecm

hadronic mass after all cuts

with Evis \approx Ecm

hadronic mass after all cuts

Total visible energy for $e^+e^- \rightarrow \mu^+\mu^- b\overline{b}$ (left) and $\gamma\gamma \rightarrow f\overline{f}f\overline{f}$ (right).

Visible P_T for $e^+e^- \to \mu^+\mu^- b\overline{b}$ (left) and $\gamma\gamma \to f\overline{f}f\overline{f}$ (right).

SIMDET MC $e^+ e^- \rightarrow \mu^+ \mu^- b \bar{b}$ (left) $\gamma \gamma \rightarrow ffff$ (right)

 $\cos \theta$ for all charged and neutral tracks for $e^+e^- \rightarrow \mu^+\mu^- b\overline{b}$ (left) and $\gamma \gamma \rightarrow f\overline{f}f\overline{f}$ (right).

Breakdown of $\gamma \gamma \rightarrow f\overline{f}f\overline{f}$ according to beamstrahlung on beamstrahlung (solid) and bremsstrahlung on bremsstrahlung (dashed).

hadronic mass 1 iso leptons

 $e^+e^- \rightarrow \nu \overline{\nu} b \overline{b}$ only on the left; ALL events on the right. Only requirements are that $|\cos \theta_{\rm thrust}| < 0.8$ and that there are no isolated leptons. B-tagging cuts and E_{vis} cuts will be needed to isolate Higgs signal on the left.

