Physics Above 500 GeV

June 18, 2002

Tim Barklow

Above 500 GeV Issues

- Experimental Environment
- SM Topics Such as $g_{t\bar{t}h}$, g_{hhh}
- Beyond SM Physics Scenarios
- \bullet Results from LHC and 500 GeV LC

Physics Scenarios Studied by SLAC Group:

- a. Topcolor seesaw model with either a 120 GeV or 1000 GeV Composite Higgs Boson and a 5 TeV weak SU(2)singlet fermion χ .
- b. SUSY Using Snowmass 2001 Points 1 & 2
- c. Extra Dimension Models:

Point	δ	M_D	(TeV)
1	3		3
2	3		6
3	6		3

SLAC Working Group Monte Carlo Production

WHIZARD is used to generate all of the SM processes $e^+e^- \rightarrow f_1f_2$, $f_1f_2f_3f_4$, and $f_1f_2f_3f_4f_5f_6$ including ISR & beamstrahlung (CIRCE).

SUSYGEN will be used to generate SUSY processes. ISR and beamstrahlung (CIRCE) are included.

PANDORA will be used to simulate graviton exchange in $e^+e^- \rightarrow f\overline{f}, \ \gamma\gamma, \ W^+W^-, \ ZZ.$

Goal is to generate 2000 fb⁻¹ MC data at $\sqrt{s} = 0.5, 0.8, 1.0, 1.2, \text{ and } 1.5 \text{ TeV}.$

100% electron and positron polarization is always assumed in event generation. Arbitrary electron/positron polarization is simulated by combining e_L^-/e_R^+ , e_R^-/e_L^+ , ... data sets.

Fully fragmented MC data sets are produced. PYTHIA is used for final state QED and QCD parton showering, as well as for fragmention and decay.

0-fermion

$e^+e^- ightarrow$	$\gamma\gamma$	
	$\gamma\gamma\gamma$	
	$\gamma\gamma\gamma\gamma\gamma$	
	$\gamma\gamma\gamma\gamma\gamma\gamma$	
2-fermion		
$e^+e^- ightarrow$	ff	f eq u
	$ u u \gamma$	
	$ u u \gamma \gamma$	
	$ u u \gamma \gamma \gamma$	
$e^-\gamma ightarrow$	$e^-\gamma$	
$\gamma e^+ ightarrow$	$e^+\gamma$	

4-fermion

$e^+e^- ightarrow$	$\gamma u v v v \gamma$	6 total
	$u_{j}\overline{d}_{j}d_{k}\overline{u}_{k}$	$25 \mathrm{total}$
	0 0	$ u_e e^+ e^- \overline{ u}_e$
		$ u_e e^+ \mu^- \overline{ u}_\mu$
		$ u_e e^+ au^- \overline{ u}_ au$
		$ u_e e^+ d\overline{u}$
		•
		•
		$c\overline{s}s\overline{c}$
	$u_j\overline{u}_ju_k\overline{u}_k$	9 total
	$u_j\overline{u}_jd_k\overline{d}_k$	$25 \mathrm{total}$
	$d_j\overline{d}_jd_k\overline{d}_k$	21 total
$\gamma\gamma ightarrow$	$f\overline{f}$	8 total
$e_L^-\gamma ightarrow$	$oldsymbol{ u}_e oldsymbol{d}_k \overline{oldsymbol{u}}_k$	5 total
$e^-\gamma ightarrow$	$e^-f\overline{f}$	10 total
$\gamma e_R^+ ightarrow$	$\overline{oldsymbol{ u}}_e u_k \overline{oldsymbol{d}}_k$	5 total
$\gamma e^+ ightarrow$	$e^+f\overline{f}$	10 total

SM Final States 6-Fermion

6-fermion

$e^+e^- ightarrow$	$u_i\overline{u}_iu_j\overline{d}_jd_k\overline{u}_k$	125 total
	$d_i\overline{d}_iu_j\overline{d}_jd_k\overline{u}_k$	150 total
	$u_i\overline{u}_iu_j\overline{u}_ju_k\overline{u}_k$	25 total
	$u_i\overline{u}_iu_j\overline{u}_jd_k\overline{d}_k$	65 total
	$u_i\overline{u}_id_j\overline{d}_jd_k\overline{d}_k$	75 total
	$d_i\overline{d}_id_j\overline{d}_jd_k\overline{d}_k$	56 total
$\gamma\gamma ightarrow$	$u_j\overline{d}_jd_k\overline{u}_k$	25 total
	$u_j\overline{u}_ju_k\overline{u}_k$	9 total
	$u_j\overline{u}_jd_k\overline{d}_k$	25 total
	$d_j\overline{d}_jd_k\overline{d}_k$	21 total
$e_L^-\gamma ightarrow$	$ u_e u_j \overline{u}_j d_k \overline{u}_k$	25 total
	$ u_e d_j \overline{d}_j d_k \overline{u}_k$	30 total
$e^-\gamma ightarrow$	$e^-u_j\overline{d}_jd_k\overline{u}_k$	20 total
	$e^-u_j\overline{u}_ju_k\overline{u}_k$	10 total
	$e^-u_j\overline{u}_jd_k\overline{d}_k$	20 total
	$e^-d_j\overline{d}_jd_k\overline{d}_k$	21 total
$\gamma e_R^+ ightarrow$	$\overline{ u}_e u_j \overline{d}_j u_k \overline{u}_k$	25 total
	$\overline{ u}_e u_j \overline{d}_j d_k \overline{d}_k$	30 total
$\gamma e^+ ightarrow$	$e^+u_j\overline{d}_jd_k\overline{u}_k$	20 total
	$e^+u_j\overline{u}_ju_k\overline{u}_k$	10 total
	$e^+u_j\overline{u}_jd_k\overline{d}_k$	20 total
	$e^+ d_j \overline{d}_j d_k \overline{d}_k$	21 total

WHIZARD MC uses the CompHEP convention for particle names, and we use them as well when specifying processes:

St.Model(Feyr	1.gau	uge)					
Particles							
Full name	P	aF	2*spin	mass	width	color	aux
photon	A	A	2	0	0	1	G
gluon	G	G	2	0	0	8	G
electron	e1	E1	1	0	0	1	
e-neutrino	n1	N1	1	0	0	1	L
muon	e2	E2	1	Mm	0	1	
m-neutrino	n2	N2	1	0	0	1	L
tau-lepton	e3	E3	1	Mt	0	1	
t-neutrino	n3	N3	1	0	0	1	L
u-quark	u	U	1	0	0	3	
d-quark	d	D	1	0	0	3	
c-quark	c	C	1	Mc	0	3	
s-quark	s	S	1	Ms	0	3	
t-quark	t	T	1	Mtop	wtop	3	
b-quark	b	B	1	Mb	0	3	
Higgs	H	H	0	MH	WH	1	
W-boson	W+	W-	2	MW	WW	1	G
Z-boson	Z	ΙZ	2	MZ	ΙwΖ	1	G

A user-defined external PYTHIA process provides access to the MC data. This external PYTHIA "process" properly sums together processes with different initial state helicities and different final states. Polarization, \sqrt{s} , and specific processes are defined in an input file:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
i_sqrts = 1000
luminosity = 100.
pol_eminus = -0.8
pol_eplus = 0.5
seed = 520033
process =
  "e1,E1 q,q,q,q"
  "e1,E1 l,q,l,q"
  "e1,E1 l,v,l,v,q,q"
  "e1,A f,l,l,q,q"
  "e1,A e1,e1,E1,e2,E2"
/
```

where q,l,v,f,x are defined as:

q=u,d,s,c,b,U,D,S,C,B l=e1,e2,e3,E1,E2,E3 v=n1,n2,n3,N1,N2,N3 f=q,1,v x=f,A e3=e3,E3 E3=E3

To read out all generated MC data:

To read out $t\overline{t}$ events:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
i_sqrts = 1000
luminosity = 3000.
pol_eminus = -0.8
pol_eplus = 0.5
seed = 520033
process =
   "e1,E1 b,b,f,f,f,f"
/
```

To read out ZH events:

```
&whizdata_input
path_root = '/afs/slac.stanford.edu/g/nld/whizard/'
i_sqrts = 1000
luminosity = 3000.
pol_eminus = -0.8
pol_eplus = 0.5
seed = 520033
process =
  "e1,E1 b,b,f,f"
  "e1,E1 e3,e3,f,f"
/
```

MC Limitations

- Improper treatment of final states with identical quarks such as $u\overline{u}d\overline{d}$. This is a parton-level generation problem as well as a fragmentation problem, and is due to a deficiency in the OMEGA amplitude calculation program. Eventually it will be fixed by the OMEGA author; in the meantime the parton-level problem can be corrected in principle with reweighting. The size of the effect is unknown, but should only be an issue in non-resonant phase space regions.
- Events are not completely unweighted. There is a wide range in cross sections, and we cannot, for example, generate an equivalent number of Bhabha's if we generate 2000 fb⁻¹ of $e^+e^- \rightarrow u\overline{u}d\overline{d}s\overline{s}$. If you restrict yourself to high-pt central events, then the event sample will be unweighted. However, as you go out to the forward region you will eventually encounter some events with weight greater than 1 (bhabhas, $\gamma\gamma$ events). Thus one should always consider the event weight which is returned in PYTHIA variable PARI(7) in common PYPARS.

SM MC Production Status

- Except for some very high cross section process, event generation for 0-2-4 fermion processes at $\sqrt{s} =$ 1000 GeV is complete.
- Integration of 6 fermion processes at $\sqrt{s} = 1000 \text{ GeV}$ is nearly complete.
- MC data sets are currently stored on MSTORE mass storage, with estimated 1.5 Terabytes storage per \sqrt{s} point. External pythia process will handle all the MSTORE details for you.
- Good progress on writing code for external pythia process that interprets input file and reads out MC data. Should be ready about a week after Santa Cruz workshop.

SPS 1 "Typical" mSUGRA: $m_0 = 100 \,\,{ m GeV} \,\,\, m_{1/2} = 250 \,\,{ m GeV}$ $A_0 = -100 \,\,{ m GeV} \,\,\, an eta = 10 \,\,\,\, \mu > 0$

Measure @ $Q^2 = M_U^2$	m_0	$m_{1/2}$	A_0	$ anoldsymbol{eta}$	$\mathrm{sgn}(\mu)$
Measure @ $Q^2 = M_Z^2$	$egin{aligned} M_{ ilde{q}_1L}\ M_{ ilde{q}_2L}\ M_{ ilde{q}_3L}\ A_t\ M_1\ \mu \end{aligned}$	$egin{array}{l} M_{ ilde{b}_R} \ M_{ ilde{b}_R} \ A_b \ M_2 \ M_A \end{array}$	$M_{ ilde{u}_R} \ M_{ ilde{c}_R} \ M_{ ilde{t}_R} \ A_ au \ M_{ ilde{g}} \ ext{tan} eta \ eta$	$M_{ ilde{e}_L} \ M_{ ilde{\mu}_L} \ M_{ ilde{ au}_L}$	$M_{ ilde{e}_R} \ M_{ ilde{\mu}_R} \ M_{ ilde{ au}_R}$
Measure @ $\sqrt{s} = .5$ TeV	$egin{array}{l} m_{h^0} \ m_{ ilde{e}_R} \ m_{ ilde{\mu}_R} \ m_{ ilde{ au}_1} \ m_{ ilde{ au}_1} \ g_{ ilde{ au}}^+ { ilde{ au}}^- z \end{array}$	$egin{array}{ll} m_{ ilde{\chi}_1^0} \ m_{ ilde{e}_L} \ m_{ ilde{\mu}_L} \ m_{ ilde{ au}_2} \ g_{ ilde{ au}}^+ ilde{ au}^Z \end{array}$	$egin{array}{lll} m_{ ilde{\chi}_2^0} \ m_{ ilde{ u}_e} \ m_{ ilde{ u}_\mu} \ m_{ ilde{ u}_ au} \ g_{ ilde{ au}}^+ ilde{ au}^- z \end{array}$	$m_{ ilde{\chi}_1^+}$	
	$egin{aligned} & g_L(\tilde{\chi}^0_1 \tilde{\chi}^0_2 Z) \ & g_L(\tilde{\chi}^+_1 \tilde{\chi}^1 Z) \ & g_R(\tilde{\chi}^0_1 \tilde{e}^R e) \ & g_R(\tilde{\chi}^0_1 \tilde{e}^R e) \ & g_R(\tilde{\chi}^0_1 \tilde{\mu}^R \mu) \ & g_L(\tilde{\chi}^0 ilde{ au}^- ilde{ au}) \end{aligned}$	$egin{aligned} & g_{R(\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} Z)} \ & g_{R(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} Z)} \ & g_{L(\tilde{\chi}_{1}^{0} ilde{e}_{L}^{-} e)} \ & g_{L(\tilde{\chi}_{1}^{0} ilde{\mu}_{L}^{-} \mu)} \ & g_{R(ilde{\chi}_{1}^{0} ilde{\mu}_{L}^{-} \mu)} \ & g_{R(ilde{\chi}_{1}^{0} ilde{ au}_{L}^{-} \pi)} \end{aligned}$	$egin{aligned} & g_{L(ilde{\chi}_{2}^{0} ilde{\chi}_{2}^{0}Z)} \ & g_{L(ilde{\chi}_{1}^{+} ilde{ u}_{e}e)} \ & g_{L(ilde{\chi}_{2}^{0} ilde{e}_{L}^{-}e)} \ & g_{L(ilde{\chi}_{2}^{0} ilde{\mu}_{L}^{-}\mu)} \end{aligned}$	$egin{aligned} g_{R(ilde{\chi}_{2}^{0} ilde{\chi}_{2}^{0}Z)} \ g_{L(ilde{\chi}_{1}^{+} ilde{ au}_{1}^{-} u_{ au})} \ g_{L(ilde{\chi}_{1}^{+} ilde{ extbf{e}}_{L}^{-} u_{e})} \ g_{L(ilde{\chi}_{1}^{+} ilde{ extbf{e}}_{L}^{-} u_{\mu})} \end{aligned}$	$g_{R(ilde{\chi}_1^+ ilde{ au}_1^- u_ au)}$
	$g_{L(\tilde{\chi}_{1}^{0} ilde{ au}_{2}^{-} au)} \ g_{L(\tilde{\chi}_{1}^{1} ilde{ au}_{2}^{-} au)} \ g_{L(\tilde{\chi}_{1}^{+} ilde{ au}_{2}^{-} u_{ au})} \ g_{L(\tilde{\chi}_{1}^{0} ilde{ u}_{e} u_{e})} \ g_{h^{0}b\overline{b}} \ g_{h^{0}W^{+}W^{-}}$	$g_{R(\tilde{\chi}_{1}^{0} ilde{ au}_{2}^{-} au)} \ g_{R(\tilde{\chi}_{1}^{1} ilde{ au}_{2}^{-} au)} \ g_{L(\tilde{\chi}_{1}^{1} ilde{ au}_{2}^{-} u_{ au})} \ g_{L(\tilde{\chi}_{1}^{0} ilde{ u}_{\mu} u_{\mu})} \ g_{h^{0} au^{+} au^{-}} \ g_{h^{0}ZZ}$	$egin{aligned} m{g}_{L(ilde{\chi}_2^0 ilde{ au}_2^- au)} \ m{g}_{L(ilde{\chi}_1^0 ilde{ u}_ au u_ au)} \ m{g}_{h^0gg} \end{aligned}$	$g_{R(ilde{\chi}_2^0 ilde{ au}_2^- au)}$ $g_{h^0c\overline{c}}$	

Neutralino Mass Matrix in $(\tilde{B}, \tilde{W}^3, \tilde{H}_1^0, \tilde{H}_2^0)$ basis:

 $\mathcal{M}=egin{pmatrix} M_1&0&-m_Zc_eta s_W&m_Zs_eta s_W\ 0&M_2&m_Zc_eta c_W&-m_Zs_eta c_W\ -m_Zc_eta s_W&m_Zc_eta c_W&0&-\mu\ m_Zs_eta s_W&-m_Zs_eta c_W&-\mu&0 \end{pmatrix}$

Chargino Mass Matrix:

$$\mathcal{M}_C = egin{pmatrix} M_2 & \sqrt{2} m_W \, c_eta \ \sqrt{2} m_W \, s_eta & |\mu| \end{pmatrix}$$

SPS #1 Remarks

- Should be able to measure with very good accuracy at $\sqrt{s} = 0.5$ TeV the following parameters: $M_{\tilde{e}_L}$, $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_L}$, $M_{\tilde{\mu}_R}$, $M_{\tilde{\tau}_L}$, $M_{\tilde{\tau}_R}$, A_{τ} , M_1 , $M_2 \mu$, $\tan \beta$. This is sufficient to pin down all the parameters at $Q^2 = M_U^2$ assuming mSUGRA.
- What is missing after $\sqrt{s} = 0.5$ TeV (and ignoring LHC) are the squark mass terms $M_{\tilde{q}_1L}$, $M_{\tilde{d}_R}$, $M_{\tilde{u}_R}$, etc.; A_t and A_b ; $M_{\tilde{g}}$; M_A . It might be possible to use the Higgs couplings $g_{h^0b\bar{b}}$, g_{h^0gg} , etc. to access M_A and A_t . Also, M_A might be accessible through $e^+e^- \rightarrow b\bar{b}A^0$.
- \sqrt{s} thresholds in GeV for associated production: $q\overline{q}\tilde{g}\tilde{\chi}_{1}^{0}(700), \quad \tilde{t}_{1}\overline{t}\tilde{\chi}_{1}^{0}(650), \quad \tilde{b}_{1}\overline{b}\tilde{\chi}_{1}^{0}(600), \quad b\overline{b}A^{0}(400).$
- Possibility of CP violating phases in soft-SUSY breaking parameters as well as non-zero off-diagonal terms in $M^2_{\tilde{q}_1L}$ matrices has not been considered.

SPS 2 "Focus Point" mSUGRA: $m_0 = 1450~{ m GeV}~m_{1/2} = 300~{ m GeV}$ $A_0 = 0~{ m GeV}~ aneta = 10~~\mu > 0$

Measure @ $Q^2 = M_U^2$	m_0	$m_{1/2}$	A_0	aneta	$\mathrm{sgn}(\mu)$
Measure @ $Q^2 = M_Z^2$	$M_{ ilde{q}_1L}$	$M_{ ilde{d}_{P}}$	$M_{ ilde{u}_R}$	$M_{ ilde{e}_L}$	$M_{ ilde{e}_R}$
_	$M_{ ilde{q}_2L}$	$M_{ ilde{s}_R}^{\mathbb{Z}_R}$	$M_{ ilde{c}_R}$	$M_{ ilde{m{\mu}}_L}$	$M_{ ilde{\mu}_R}$
	$M_{ ilde{q}_3L}$	$M_{ ilde{h}_B}$	$M_{ ilde{t}_{P}}$	$M_{ ilde{ au}_L}$	$M_{ ilde{ au}_R}$
	A_t	$A_b^{\circ_R}$	$oldsymbol{A}_{ au}$	-	
	M_1	M_2	$M_{ ilde{m{q}}}$		
	μ	M_A	$ anoldsymbol{eta}$		
Measure @ $\sqrt{s} = .5$ TeV	m_{h^0}	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}^0_4}$
	$m_{ ilde{\chi}_1^+}$	$m_{ ilde{\chi}_2^+}$			
	$g_{L(ilde{\chi}_1^0 ilde{\chi}_2^0Z)}$	$g_{R(ilde{\chi}_1^0 ilde{\chi}_2^0 Z)}$	$g_{L(ilde{\chi}_1^0 ilde{\chi}_3^0Z)}$	$g_{R(ilde{\chi}_1^0 ilde{\chi}_3^0 Z)}$	
	$g_{L(ilde{\chi}_1^0 ilde{\chi}_4^0Z)}$	$g_{R(ilde{\chi}_1^0 ilde{\chi}_4^0Z)}$	$g_{L(ilde{\chi}_2^0 ilde{\chi}_2^0 Z)}$	$g_{R(ilde{\chi}_2^0 ilde{\chi}_2^0 Z)}$	
	$oldsymbol{g}_{L(ilde{\chi}^0_2 ilde{\chi}^0_3Z)}$	$g_{R(ilde{\chi}^0_2 ilde{\chi}^0_3 Z)}$	$g_{L(ilde{\chi}_2^0 ilde{\chi}_4^0Z)}$	$g_{R(ilde{\chi}^0_2 ilde{\chi}^0_4 Z)}$	
	$g_{L(ilde{\chi}^0_3 ilde{\chi}^0_3Z)}$	$g_{R(ilde{\chi}^0_3 ilde{\chi}^0_3Z)}$	$g_{L(ilde{\chi}_3^0 ilde{\chi}_4^0Z)}$	$g_{R(ilde{\chi}_3^0 ilde{\chi}_4^0Z)}$	
	$g_{L(ilde{\chi}_1^+ ilde{\chi}_1^-Z)}$	$g_{R(ilde{\chi}_1^+ ilde{\chi}_1^-Z)}$	$g_{L(ilde{\chi}_1^+ ilde{\chi}_2^-Z)}$	$g_{R(ilde{\chi}_1^+ ilde{\chi}_2^-Z)}$	
	$g_{h^0b\overline{b}}$	$g_{h^0 au^+ au^-}$	g_{h^0gg}	$g_{h^0c\overline{c}}$	
	$g_{h^0W^+W^-}$	g_{h^0ZZ}	$g_{L(h^0 ilde{\chi}_2^+ ilde{\chi}_1^-)}$	$g_{R(h^0 ilde{\chi}_2^+ ilde{\chi}_1^-)}$	
	$g_{L(ilde{\chi}_1^+ ilde{ u_e} e)}/ au$	$m^2_{ ilde{ u_e}}$	$g_{L(ilde{\chi}_2^+ ilde{ u}_e e)}/r$	$n_{\tilde{ u_e}}^2$	
	$g_{R(ilde{\chi}_{j}^{0} ilde{e}_{R}^{-}e)}/2$	$m^2_{ ilde{e}_R}$	$g_{L(ilde{\chi}_{j}^{0} ilde{e}_{L}^{-}e)}/r$	$n^2_{ ilde{e}_L}$	

SPS #2 Remarks

- Should be able to measure with very good accuracy at $\sqrt{s} = 0.5$ TeV the following parameters: M_1 , M_2 μ , $\tan \beta$. This is sufficient to measure $m_{1/2}$, $\tan \beta$, $\operatorname{sgn}(\mu)$ at $Q^2 = M_U^2$ and to predict $m_{\tilde{g}}$ assuming mSUGRA.
- At $\sqrt{s} = 0.5$ TeV the only handle on mSUGRA parameters m_0 and A_0 is through the Higgs couplings $g_{h^0 b \overline{b}}, g_{h^0 g g}$, and through measurements or limits on $g_{L(\tilde{\chi}_1^+ \tilde{\nu}_e e)}/m_{\tilde{\nu}_e}^2, g_{R(\tilde{\chi}_j^0 \tilde{e}_R^- e)}/m_{\tilde{e}_R}^2$, etc. The Higgs couplings depend on M_A at tree-level, and on A_t through rad. corr. Using μ and $\tan \beta$ measured in gaugino production and decay, it might be possible to extract M_A and A_t from Higgs coupling measurements.
- Measurement of additional Higgs-gaugino-gaugino couplings might be possible though processes such as $e^+e^- \rightarrow h^0 \tilde{\chi}_1^+ \tilde{\chi}_1^-$.
- \sqrt{s} thresholds in GeV for associated production: $q\overline{q}\tilde{g}\tilde{\chi}_{1}^{0}(900), \ \tilde{t}_{1}\overline{t}\tilde{\chi}_{1}^{0}(1250), \ \tilde{b}_{1}\overline{b}\tilde{\chi}_{1}^{0}(1380), \ b\overline{b}A^{0}(1450).$