

Saint Malo, April 12-15, 2002

Simulation Studies for a Digital Hadron Calorimeter

Arthur Maciel NIU / NICADD

- Introduction to the DHCal Project
- Simulation Tools and Models
- From Analog to Digital
- Towards an E-Flow Algorithm
- A Proposed Clustering Strategy
- Current Status, Future Plans

Introduction

- University of Texas at Arlington (UTA) October 2001
 Argonne National Laborat
- - \blacktriangleright A joint proposal for the development of digital hadron calorimetry technology for the Linear Collider
 - > NIU investigates a scintillator based design
 - ► UTA investigates a gas based (GEM) design
 - > ANL investigates an RPC based design
 - For hardware project details see talk by J. Repond

Main Goals of the Software Effort

- To assist in the design of a Digital Hadron Calorimeter (DHCAL)
 - Parameter Optimization e.g;

transverse segmentation, cell depth and absorber density, detector depth, layer geometry, stack geometry, TRK-EM-HAD matching

- Feasibility and Resolution Reach of an *Energy Flow* Strategy
 - > Identify energy deposition patterns (clusters) arising from *individual* particles
 - Efficient cluster resolution and reconstruction, with central track matching capability under expected Liner Collider (~TeV) conditions
 - Ability to discriminate charged .vs. neutral particle generated clusters
- Develop a solid notion of the Physics Reach (versus cost)

Simulation Tools and Detector Model

http://jas.freehep.org/

The NICADD "sioserver" http://nicadd.niu.edu/dhcal/

Linear Collider Detector Simulation Package

http://www-sldnt.slac.stanford.edu/jas/documentation/lcd/

Using the "SD" Detector Model (Snowmass 2001), as described in;

http://www-sldnt.slac.stanford.edu/snowmass/Welcome.html

The SD Calorimeter

Projective towers, inside a 5 Tesla B-field

	EM	HAD
Inner Rad	127 cm	154 cm
Outer Rad	142 cm	256 cm
N.of layers	30	34
Z – max	210 cm	312 cm
Segm.($\theta \ge \phi$)	840 x 1680	600 x 1200
Transv. cell size	0.5 x 0.5 cm	1 x 1 cm
active layer	Si, 0.4 mm	Polyst 1cm
passive layer	W, 2.5mm	S.Steel 2cm
Rad-Int lengths	20 - 0.8	40 - 4

A. Maciel, 2nd ECFA-DESY Workshop, St. Malo, April 19, 2002

Segmentation Studies

K^L₀ Analysis by S.Magill (ANL)

-Analog Readout

 $e^+e^- \rightarrow ZZ (500 \text{ GeV CM})$ Clustering from "MC-truth"

"SD" Detector

Compare to digital \Rightarrow

A. Maciel, 2nd ECFA-DESY Workshop, St. Malo, April 19, 2002

A. Maciel, 2nd ECFA-DESY Workshop, St. Malo, April 19, 2002

700

800

900

1,000

35

4 fi

entries : 545

mean : 24.7

rms : 7.48

50

Studies Towards an Energy Flow Algorithm

Two distinct cell-clustering approaches currently being pursued;

- (1) A layer by layer search for local maxima (seeds) Nearest Neighbours cluster building Longitudinal matching (stacking) of layer clusters
- (2) Variable size 3D-Domain(θ , φ , ρ) search for local maxima Longitudinal matching (stacking) of such cell domains

The plan is to;

- investigate performances independently
- understand strong/weak points
- study a possible synergy between both approaches (i.e. collect best aspects into one hybrid method)

Clustering by Domain Inspection

- A domain is a box $(n_{\theta} x m_{\varphi} x l_{\rho})$, all three variable and self adjusting after being given initial values () in plots).
- Searches run in $(n \times m)$ with slower-*l* acting as a test parameter.
- Search produces a set of ($\langle \theta \rangle, \langle \phi \rangle$) centroids for layer matching.
- EM-Cal searches start around shower-max, proceed to edges.
- HAD-Cal searches start around the entry layer.
- Centroids are determined from local maxima (Energy / N.Hits).
- Domain "methods" investigate neighbourhood gradients for the resolution of nearby clusters.

Cluster Energy Profiles for 10 GeV π 's

Cluster N.of Hits Profiles for 10 GeV π 's

10 GeV π 's

Digital

5000

246

44.2

44.0

380

2.54

450

5000

263

44.5

65.0

412

2.56

500

Single Layer Matching Resolution for 10 GeV π 's

Clustering by Domain Inspection

Analog

50 GeV π 's

5000

44.9

9.37

1.74

68.6

8.82

90

100

5000

47.0

9.53

1.74

71.9

10.0

90

100

Digital

Clustering by Domain Inspection

Single Layer Matching Resolution for 50 GeV π 's

Clustering by Domain Inspection

A. Maciel, 2nd ECFA-DESY Workshop, St. Malo, April 19, 2002

Preliminary Tests

- Using mono energetic single tracks
- Internal checks&consistency / debug
- Parameter selection, initial values
- Parameter stability, finding eff.
- Energy resolution, stacking resolution
- Analog .vs. Digital
- Results encouraging (still trivial)

Next Steps

- Space resolution
- Develop domain methods to;
 - determine the transverse bounds of a cluster
 - resolve nearby clusters
 - implement a split-merge strategy
 - generate pattern recognition discriminators (isolation, neighbourhood gradients...)

Example Domain Methods

(8x8) - Domain EDensity (20x20) - Domain EDensity (12x12) - Domain EDensity **Centroid Determination** 1.0 + 0.6 T 0.30-0.5 0.25-0.8+ 0.20 **Domain Energy** 0.4 0.6+ 0.3-0.15 **Density** 0.4 0.2+ 0.10+ 0.2 0.1+ 0.05-0.0+ 0.0+ 0.00 150 0 50 100 150 50 100 150 0 50 100 Π. **Centroid** Isolation (8x8) - Domain EDensity G1 (12x12) - Domain EDensity G1 (20x20) - Domain EDensity G1 0.40 T 0.25 T 0.12 0.35+ 0.10 0.20 0.30+ **Domain Energy** 0.08-0.25+ 0.15 0.20 **Density** 1st Differential 0.06-0.15 0.10+ 0.04 0.10 0.05 0.02-0.05 0.00 0.00 0.00-100 50 100 50 100 50 150 150 150 Π. n. (8x8) - Domain EDensity G2 (12x12) - Domain EDensity G2 (20x20) - Domain EDensity G2 **Domain Energy** 1.0 T 1.5 T 1.0 T 0.8-**Density 2nd Differential** 0.8+ 1.0 0.61 0.6 0.4 0.51 0.4 -0.2-0.0 0.0 0.2--0.2+ -0.5-0.0 -0.4--0.6+ -0.21 -1.0 5k. 10GeV π 's 50 100 150 50 100 150 50 100 150 Ω 0 0

(Arbitrary units, similar w/ N.hits)

A. Maciel, 2nd ECFA-DESY Workshop, St. Malo, April 19, 2002

Example Domain Methods

(Arbitrary units, similar w/ N.hits)

Example Domain Methods

(Arbitrary units, similar w/ N.hits)

Summary, Prospects

- Work recently started on two E-Flow driven fronts.
- Now at the preliminary tests and tool development stage.
- Proceed soon to more detailed simulations (GEANT4).
- Implement the NIU+UTA+ANL specific prototypes.
- Integrate E-Flow algorithm development into Linear Collider physics studies.
- Pursue a sharing of tools, models and methods with the L.C.Detector community, towards establishing common grounds for detector performance development.