Geant4 application for future linear collider detector studies

Toshinori Abe & Masako Iwasaki 2/21/2002 Many thanks Dr. Asai for his kind help

Contents of this talk

- Introduction
- GEANT4 application for LCD
- GEANT4 and GISMO
 - (by Dr.Iwasaki)
- Photon reconstruction (by Dr.Iwasaki)
- Calorimeter tracking
- Summary and future

Introduction

 Requirements from future linear collider \rightarrow very good jet energy resolution \rightarrow needs energy flow method typical multi-jet event chrg. part. carry 64% $E \rightarrow$ tracker photon carry 25% $E \rightarrow EM$ cal. neut. Had. carry $11\% E \rightarrow HAD$ cal. Calorimeter must be optimized for energy flow. **∞** We used to use GISMO, but now switch to 3 CIEAN

Detector geometry

Detector geometry must be flexibly set. \rightarrow We do not want to make executables detector by detector. Current solution is XML. XML is a text file and easily change detector geometry.

An example of XML file

```
<volume id="EM_BARREL" rad_len_cm="0.7248" inter_len_cm="0.028" >
  <tube>
    <barrel_dimensions inner_r = "127.0" outer_z = "210.0" />
    <layering n="30">
      <slice material = "W" width = "0.25" />
      <slice material = "Si" width = "0.04" sensitive = "ves" />
      <slice material = "G10" width = "0.2" />
      <slice material = "Air" width = "0.01" />
    </layering>
    <segmentation cos_theta = "840" phi = "1680" />
  </tube>
 <calorimeter type = "em" />
</volume>
<volume id="HAD_BARREL" rad_len_cm="1.133" inter_len_cm="0.1193">
  <tube>
    <barrel_dimensions inner_r = "153.0" outer_z = "312.0" />
    <lavering n="34">
      <slice material = "Stainless steel" width = "2.0" />
      <slice material = "Polystyrene" width = "1.0" sensitive = "yes" />
    </layering>
    <segmentation cos_theta = "600" phi = "1200" />
  </tube>
 <calorimeter type = "had" />
</volume>
```


$ee \rightarrow ZH$; $Z \rightarrow \mu \mu$ (with SD)

VXD:CCD **Tracker: Silicon strip** (5layers) Magnet: 5Tesla **EM Calorimeter:** Si+W $5x5mm^2$ R=127cm HAD Calorimeter: **Stainless Steel** + Scintillator $1 \times 1 \text{ cm}^2$ R=143cm

6

$ee \rightarrow ZH$; $Z \rightarrow \mu\mu$ (with LD)

VXD:CCD Tracker: **TPC** Magnet: 3Tesla EM Calorimeter: 5x5cm² R=200cm HAD Calorimeter: Pb+Scintillator 20x20cm² R=250cm

GEANT4 application for LCD

- We use GEANT4.4.0 and ROOT3.2.7.
- Input generator data is ROOT file format or STDHEP format.
- Output data (hits,...) is written in ROOT file format.

 The application program works on various computer plat forms (Linux, SunOS, Windows).

Event generation time

 Generate ee→tt @ Ecm=500 GeV
 Computer: RedHat7.2+733MHz CPU SD: ~ 1mim/event
 LD: ~ 3mim/event

Comparison between GEANT4 and GISMO (by Dr.Iwasaki)

EM Hit Energy (e & photon, SD)

E_{GEANT4} <E_{GISMO} (~10%) (Use same energy scale)

EM Hit Energy (π & μ , SD)

2/21/02

GISMO ... less high energy tail

Hit Energy ($Z \rightarrow \mu\mu$, SD, Geant4)

Hit Energy ($Z \rightarrow \mu\mu$, SD, Gismo)

Max. hit energy in a cluster (e & photon, SD)

Max. hit energy in a cluster (π & μ, SD)

2/21/02

GISMO/GEANT4 quite different shape... need more study in future

Photon reconstruction (by Dr.Iwasaki)

γ selection by transverse information

- Extrapolate charged tracks to the cluster radius.
- Associate the nearest track to the cluster.

 γ selection: $\Pi=48\%$ $\epsilon=98\%$

γ selection by longitudinal information

γ selection by longitudinal information (cont.)

We determine the longitudinal γ shape by fitting.

χ^2 for the γ assumption

 Overall γ selection performance with other selection:
 Π=85%
 ε=85%

Mass reconstruction (no kin. con.)

	W mass	error	Top mass	error
Track + γ	67.1±15.9 GeV	(28%)	141.0±33.5	(24%)
Track + γ (true)	70.2±16.9	(24%)	147.0±31.7	(22%)
Track + γ (true) + h ⁰ (true)	77.2±15.1	(20%)	159.7±30.7	(19%)
True-γ/selected-γ difference 2~4%				
\rightarrow very good γ selection performance				
Adding the neutral hadron clusters				
^{2/21} //>can improve mass resolution 3~4% ²²				

Calorimeter tracking

- Fine granularity of SD calorimeter (5X5mm²) makes enable tracking.
- Calorimeter may help track finding with tracking device and can significantly contribute to physics analysis (GMSB,...)
- We have checked the tracking performance using Z→µµ and single photon events.

Charge separation

Sample is Z→μμ @ Ecm=91.26GeV

Impact parameter resolution

Impact parameter and momentum resolution must improve when the tracks link to hits in outer layer of tracking device.

Line fitting of photon clusters

DOCA resolution

10GeV gamma from I.P.

Summary

 LCD Geant4 works with XML detector file on various computer plat forms.

http://www-

sldnt.slac.stanford.edu/nld/New/Docs/LCD_Root/root.htm

- Significant difference in hadron and muon hits between GEANT4 and GISMO.
- Current SD detector design gives very good photon reconstruction.

Calorimeter tracking is promising for SD.

Future plan

- Implementation of Norman's "generic hit output" idea.
- Make GEANT4 plug-in for ROOT.
- Support of SIO output format.
 Request to GEANT4
- Please support various platforms (HP-UX, AIX,...)
- Please allow optimization flag for Windows

Detector designs

