SCIPP

Silicon Strip Detectors at the SSC, LHC, in Space: Lessons learned... (and right away forgotten)

Hartmut F.-W. Sadrozinski

Santa Cruz Institute for Particle Physics (SCIPP)

Principle of Silicon Strip Detectors

Evolution of Silicon Detectors

Moore's Law for Silicon Detectors

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

The Cost of SSD: KISS

Trends in the Cost of Silicon Detectors

Cost of processing wafers reduced ~ 4x

Increased Area 4" -> 6" Better utilisation of area Higher Yield

Improved Quality e.g. GLAST detectors: <2nA/ cm² <2*10⁻⁴ bad channels

Are Double-sided SSD viable for large system?

(Guestimates by HFWS)

Design Drivers: Resources and Speed

Edge joint and wire bonds before

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Tracking Milestones: Fixed Target

That's how it all began

Fixed Target experiments with high rates:

Na11 (ACCMOR) Na14 E706 E691

Detect heavy decaying particles through their finite decay distance

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Tracking Milestones: Vertex Detectors

The big step forward in Mark2: ASIC's (Terry Walker et al)

Vertex Detector Paradigm ASIC's, Few thin layers, Close in.

Every LEP Experiment has a Vertex Detectors:

Double-Sided AC-coupled

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Tracking Milestones: Highest Luminosity LHC

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Square Tubes

Thermal[®] Contract

Tracking in Space: AMS

Criteria for large-scale Application:

It's the environment, stupid!

	SSC/LHC BaBar		GLAST	
Time between Collisions [ns]	25 - 40	4	60,000	
<ntrack>/Collision</ntrack>	~100	~10-5?	1	
Track Rate [kHz]	4,000	0.2?	15	
Yearly Dose [Mrad]	1 - hadrons	0.2 - electrons	0.0002 - p	
{Radius} [cm]	{30}	{~3}	$\{n/a\}$	
Cooling	Evaporative	Liquid - FEE	Conductive	
Temp [ºC]	-17	10	15 - 25	
Biggest Headache	Cooling of SSD	Low p,	SEE	
	Radhard ASICs	Azimuthal	Passive	
		Dependence	Cooling	
		of Radiation		

Criteria for large-scale Application: KISS

	ATLAS	BaBar	GLAST	
Strip Resolution [µm]	25	10	60	
Inner/Outer Radius	30/52	3/14	"3cm"	
[cm]	(Pixels 4/14)			
# of Layers	2 x 4 (+- 40mrad)	5 (0, 90°)	2 x 18 (0, 90°)	
	Pixels 3			
# of Detectors	SS 16,000 (4")	DS 340	SS 10,000 (6")	
# of Modules	4,000	52	300	
# of Assembly houses	3+7	~3	1 FEE (Indu.)	
			2 Trays (Indu.)	
Method of Assembly	Optical	Mechanical?	Mechanical	
Interfaces: mech	Staves/Cooling Pipe	Cylinders	Tower Trays	
Electrical	Stave	Hybrids Tower Cab		
Data	2 LED / 2 Modules	G-Link/Module	Tower cables	

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Tracking Milestones: Highest Luminosity LHC

ATLAS: Silicon Tracker Simple Detectors, Optimized Electronics Thermal management

Change in Paradigm: coverage of large area electronics inside tracker volume One module 2% R.L., SSD only 0.6%, (without Services!). ARE THIN SSD VIABLE?

Temperature Range :

-17°C (cooling pipe) to +16°C (ASICs)

Hartmut F.-W. Sadrozinski, SCIPP, UC Santa Cruz GLAST: Ladder assembly: Mechanical only

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

SuperGLAST tray

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

GLAST: Placement of ladders on trays

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

GLAST: Placement of ladders on trays

Hartmut F.-W. Sadrozinski, SCIPP, UC Santa Cruz **SDC/ATLAS Ideas and what happen to them:**

	Pro Con Accepted/Rejected		Accepted/Rejected	
Short Strip SSD	"best noise	Power,	R:	ok
L ~ 1 cm	performance"	Interconnects	"long" strips 12cm better	
Double-sided SSD	Low mass, space point	Operation,	R: Expensive	ok
		Rad damage	Risky (CDF)	
N-side SSD	Mitigates Rad. damage	Cost	R: Expensive, exclusive	bad
Replace Staws by one layer of SSD	Good resolution, No 30% occupancy	No PID	R: No role for straw collaborators	bad
Evaporative Cooling	Self-regulating	open, Isobutane	R: too risky	ok
Binary Ice Cooling	Self-regulating	Ice blockage	R: NO H2O in ATLAS	?
Evaporative Cooling	Self-regulating	Does it work	A: pressure group	?
PG Sandwich Module	Self-heating solved	More mass?	A: safe solution	
Kapton Hybrid	Low mass, Industry	Is it stable?	A: only working solution	ok
Binary Readout	Simple, low power	Need more info?	A: lower power, cost (size)	
Analog Readout	All info kept, resolution	DAT nightmare	R: more power, cost, DAT	
Bipolar ASICs	Elegant, Rad hard	Yield	A: Cost, Rad Hard	?

Cave dinares, cave regentes, cave collaborentes

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Good-Bad SDC/ATLAS Ideas

Radiation tolerant detectors: http://scipp.ucsc.edu/~hartmut/IEEE_97/IEEE_97_HI_LUM.ps

PG Sandwich:

http://scipp.ucsc.edu/~hartmut/spgs_ieee.ps

Short strips

SCIPP SDC Tracker Subsystem Reports SCIPP 89-39, 90-30, 91-28

Cooling:

SCIPP SDC Tracker Subsystem Reports Kapton Hybrid straddling the SSD: Taka Kondo's 2001 IEEE talk

Si Layer at large radius instead of 50 layers of straws Vancouver SSC Workshop SCIPP 89-50

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Criteria for large-scale Application:

Flexibility

Adapt to Environment, Scale Use Conservative Approach No New Technologies (LOMTM)

Modularity

Clean Interfaces

Low risk in Performance and Schedule

Pre-test parts, integrate as late as possible

Redundancy

No single-point failures

Q/A

Parts Selection Involve Industry Procedures Early R&D, work with vendors Testing

Hartmut F.-W. Sadrozinski, SCIPP, UC Santa Cruz

GLAST Detector Concept: Pair Conversion Telescope

SCIPP

Feb 26, 2002 Silicon Detectors

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

GLAST TKR Flight-Tower Design & Assembly

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

TKR Interconnects: Duck Soup?

Few Clean Interfaces, No Cross strapping

West Coast Front-End Electronics

Philosophy: get into the digital world on-chip asap use mature engineering instead of software corrections

Binary Readout:

Low-power, low noise ASIC Peaking time 20ns -> 1µs (L, Bkgd) Threshold settable in every ASIC Channel Masks Trigger = OR of one SSD or ASIC useful

Pulse Height:

Time-over-Threshold with large dynamic range Distinguish single tracks from two tracks in one strip

Challenge: Tracker Noise and Efficiency

- Noise occupancy determines the noise rate of the LVL1 trigger, a coincidence of 6 OR'd layers.
- Noise RMS $\sigma = 130 + 21 \text{*C/pF} \text{ [e-]}$, $\tau = 1.3 \mu s$
- Hit efficiency was measured using single electron tracks and cosmic muons.
- The requirements were met: 99% efficiency with <<10⁻⁴ noise occupancy.

scipp Redundant TKR Electronics for large Integration

- Serial, LVDS readout and control lines.
- Two readout and control paths for every 64-channel front-end chip.
- Any single chip can fail without preventing the readout of any other.
- Either of the two communications cables can fail without affecting the other.
- What about failure of power?_{24 64-channel amplifier-discriminator chips for each detector layer}
- Trigger output = OR of all channels in a layer.
- Upon trigger (6-fold coincidence) data are latched into a 4event-deep buffer in each front-end chip.
- Read command moves data into the GTRC.
- Token moves data from GTRCs to TEM.

SCIP Testing/QA for the GLAST SSD: Think about Scale

Acceptance QC: flight sensors

- Order high quality SSD → testing of detectors is done by vendor: i-V, C-V, bad channels, R's, . NO single channel current testing!
- Measurement of parameters crucial for assembly by GLAST assembly institution: i-V and dimensions

Process Control: test structures

- Incorporate Test structures, test one out of every lot (48) at Hiroshima U. & INFN: Measure all detector parameters specified in specifications, radiation effects
- Test wire bonding and glueing on test structures

Assembly QA: flight sensors / ladders

- Testing after bonding and pre-post encapsulation by GLAST assembly institution: "Vital" parameters (i-V of ladders and coupling caps on every strip)
- Test before tray assembly:

i-V on ladders

This program was based on our experience with the >500 HPK SSD in the Beam Test Engineering Module (BTEM, SLAC-8471).

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

GLAST SSD: Develop 6" Technology

The SSD design has been finalized and procurement is underway

11,500 SSD inlude 10% Spares/Wastage

Qualify Prototypes from HPK

(experience with ~5% of GLAST needs)

	GLAST 1996	GLAST 1997	GLAST 1998	GLAST 1999	GLAST 2000		
Wafer Size	4"	4"	6"	6"	6"		
Sensor Size[cmxcm]	6x6	6.4×6.4	6.4×10.7	9.5×9.5	8.95x8.95		
Pitch [um]	236	194	194	208	228		
Implant Width[um]	57	50	50	52	56		
Thickness [um]	500	400	400	400	400		
Biasing	Punch	Poly-Si	Poly-Si	Poly-Si	Poly-Si		
	Through						
Bias Voltage [V]	140	100	100	100	100		0.74
Current [nA/cm ²]		~2.5	~2.5	~1.7	~1.5		0.1*specs
% bad strips		0.02	0.04	0.04	0.03	←	
# delivered	~20	296	256	35	35	-	-
Use	BT'97	BTEM	BTEM	<100> Wafer	Acceptance		+1,500

Additional Prototypes: Micron (UK), STM (Italy), CSEM (Switzerland)

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

6" wafer of the GLAST SSD

Each wafer has a GLAST2000 SSD and a GLAST cut-off. We have established the correlation between SSD and test structure performance.

Test Structures on the GLAST SSD Wafer

Conclusions

- Finalize technical choices asap (GLAST vs ATLAS/CMS)
- Choose a conservative technical solution
- The cheapest solution will most likely cost you more (later)
- Think big (Moore is on your side)
- Think big (you will have to de-scope anyway later)
- Work with Industry
- Build full-size prototypes for beam tests
- Adapt specifications/testing/assembly to the scale of the system

(GLAST vs. AMS)

- The devil is in the services (power, cooling, DAT, ...)
- Do not accept a marginal solution because a strong collaborator / good friend wants it (she might not get the funding anyway)