e^+e^- Physics Above 500 GeV -Quantifying the Advantage of High Energy

Jan 29, 2002

Tim Barklow

Upcoming LC technology discussions will include energy expandibility beyond $\sqrt{s} = 0.5 \text{ TeV}$

⇒ Physics gains from higher energy running should be fully explored and understood.

To that end it would seem appropriate for this group to undertake a study with the following two objectives:

- 1. For several physics scenarios, perform a detailed comparison of the physics programs at $\sqrt{s} = 0.8$, 1.0, 1.2, and 1.5 TeV.
- 2. Determine if there is a natural energy scale above $\sqrt{s} = 0.5$ TeV which the next LC should be capable of attaining through energy expansion.

Physics Scenarios:

- a. SM w/ 120 GeV Higgs Boson
- b. SM w/o Higgs Boson
- c. SUSY Models X,Y,Z

Suggestion is to ignore Z' resonance production, extra dimensions and other possibilities for now in order to avoid proliferation of physics scenarios.

Limits on Z' bosons, fermion compositeness, etc. can always be included as these are independent of physics scenarios.

Experimenting at CLIC

Machine parameters lead to challenges for experimenting at CLIC Beam-Beam effects lead to considerable backgrounds and distortion of the luminosity spectrum (beam strahlung)

For 3 TeV and $\mathcal{L}=10^{35}cm^{-2}s^{-1}$ (D. Schulte)

Luminosity/bunch	$10^{-2}~{ m nb}^{-1}$
Beam energy spread	1%(FWHM)
Time between bunches	0.67 ns
Average energy loss	31%
photons/beam particle	2.3
Number/energy incoh. pairs	$4.6\cdot10^5/3.9\cdot10^4$ TeV
Number/energy coh. pairs	$1.4\cdot10^9/4.4\cdot10^8$ TeV
Hadronic ($\gamma\gamma$) events, $W_{\gamma\gamma} > 5$ GeV	4

Coherent pairs disappear in beampipe (backscattering!)

✦ Incoherent pairs: suppressed by strong magnetic field of detector

Further backgrounds to consider: neutrons, muons, synchrotron radiation...

$\sqrt{s} = 3 \,\, { m TeV}$

$e^+e^- \rightarrow H^+H^- \ M_H = 900 \ \text{GeV}$

Cross section as function of mass

Luminosity needed for discovery/ precision measurements

Based on statistical errors, including background

- $e^+e^- \rightarrow H(500 \text{GeV}, \text{ invisible})X$: 5σ discovery
- $e^+e^- \rightarrow \nu\nu HH(120)$: $\delta\lambda_{HHH}/\lambda_{HHH} < 15\%$
- $e^+e^- \rightarrow \nu\nu ZZ/\nu\nu WW$: $\delta\sigma/\sigma < 1\%$
- $e^+e^- \rightarrow b\overline{b}$: $\delta\sigma/\sigma < 1\%$

CLIC Study by A. De Roeck et al.

Precision on λ_{HHH} (5000 fb⁻¹)

Study by M. Battaglia et al.

95% CL Contours for SSM Z'(M. Battaglia)

Sum Rule I

$$\sum\limits_i g_{H_iWW}^2 = g^2 M_W^2$$
 .

In MSSM

$$g_{hWW} = gM_W \sin{(eta - lpha)} \ g_{HWW} = gM_W \cos{(eta - lpha)}$$

 $\cos{(eta-lpha)} o 0 ext{ in decoupling limit of } M_A, M_H o \infty$

 $\begin{array}{l} \text{Can measure } \Delta \sin^2(\beta - \alpha) / \sin^2(\beta - \alpha) \simeq 3\% \text{ using} \\ e^+e^- \to Zh \text{ and } e^+e^- \to \nu \overline{\nu} W^+ W^- \to \nu \overline{\nu} h \text{ at} \\ \sqrt{s} = 350 \text{ GeV assuming } M_h = 120 \text{ GeV} \\ \text{(R. Van Kooten)} \end{array}$

Sum Rule I (cont.)

Consider $W_{
m L}W_{
m L}
ightarrow Z_{
m L}Z_{
m L}$ as studied in $e^+e^-
ightarrow
u\overline{
u}ZZ$

$$\mathcal{A} = rac{\mathrm{Amplitude}\;\mathcal{A}\;\mathrm{for}\;W_{\mathrm{L}}W_{\mathrm{L}}
ightarrow Z_{\mathrm{L}}Z_{\mathrm{L}}\;\mathrm{in}\;\mathrm{MSSM}:}{v^2(s-lpha)+M_H^2\cos^2(eta-lpha))+sM_h^2M_H^2}$$

$$ext{For }s \gg M_h^2, \;\; s \ll M_H^2:
onumber \ \mathcal{A} = -rac{M_h^2}{v^2} igg(1 - rac{s}{M_H^2} \sin^2(eta - lpha) - rac{s}{M_h^2} \cos^2(eta - lpha)igg)$$

$$egin{aligned} ext{For} \ s \gg M_h^2, \ \ s \ll M_H^2, \ \ cos^2(eta-lpha) o 0 : \ \mathcal{A} = -rac{M_h^2}{v^2}igg(1-rac{s}{M_H^2}igg) \end{aligned}$$

$$egin{aligned} ext{For} \ s \gg M_h^2, \ \ s \ll M_H^2, \ \ \cos^2(eta-lpha) \gg M_h^2/s: \ \mathcal{A} = rac{s}{v^2}\cos^2(eta-lpha) \end{aligned}$$

Sum Rule II : Closure of the Neutralino System

$$egin{aligned} & \sum\limits_{i,j=1}^{4} \, \mathcal{Z}_{ij} \mathcal{Z}_{ij}^{*} = rac{1}{2} & & \sum\limits_{i,j=1}^{4} \, g_{Lij} g_{Lij}^{*} = rac{1}{16 c_{W}^{4} s_{W}^{4}} \ & \sum\limits_{i,j=1}^{4} \, \mathcal{Z}_{ij} g_{Lij}^{*} = 0 & & \sum\limits_{i,j=1}^{4} \, g_{Lij} g_{Rij}^{*} = rac{1}{4 c_{W}^{4}} \ & \sum\limits_{i,j=1}^{4} \, \mathcal{Z}_{ij} g_{Rij}^{*} = 0 & & \sum\limits_{i,j=1}^{4} \, g_{Rij} g_{Rij}^{*} = rac{1}{c_{W}^{4}} \end{aligned}$$

$$\mathcal{A}\left(e^+e^- \to \tilde{\chi}_i^0 \tilde{\chi}_j^0\right) = \frac{e^2}{s} Q_{\alpha\beta} \left[\overline{v}(e^+) \gamma_\mu P_\alpha u(e^-)\right] \left[\overline{u}(\tilde{\chi}_i^0) \gamma^\mu P_\beta v(\tilde{\chi}_j^0)\right]$$

$$egin{aligned} Q_{LL} &= +rac{D_Z}{s_W^2 c_W^2} (s_W^2 - rac{1}{2}) \mathcal{Z}_{ij} - D_{uL} g_{Lij} & Q_{RL} &= +rac{D_Z}{c_W^2} \, \mathcal{Z}_{ij} + D_{tR} g_{Rij} \ Q_{LR} &= -rac{D_Z}{s_W^2 c_W^2} \, (s_W^2 - rac{1}{2}) \mathcal{Z}_{ij}^* + D_{tL} g_{Lij}^* & Q_{RR} &= -rac{D_Z}{c_W^2} \mathcal{Z}_{ij}^* - D_{uR} g_{Rij}^* \end{aligned}$$

(Choi, Kalinowski, Moortgat-Pick, Zerwas, hep-ph/0108117)

Sum Rule II (cont.)

Neutralino Mass Matrix in $(ilde{B}, ilde{W}^3, ilde{H}^0_1, ilde{H}^0_2)$ basis:

$$\mathcal{M}=egin{pmatrix} M_1&0&-m_Zc_eta s_W&m_Zs_eta s_W\ 0&M_2&m_Zc_eta c_W&-m_Zs_eta c_W\ -m_Zc_eta s_W&m_Zc_eta c_W&0&-\mu\ m_Zs_eta s_W&-m_Zs_eta c_W&-\mu&0 \end{pmatrix}$$

Do the MSSM neutral gauginos and Higgsinos $(\tilde{B}, \tilde{W}^3, \tilde{H}_1^0, \tilde{H}_2^0)$ saturate the Neutralino System ?

Chargino Mass Matrix:

$$\mathcal{M}_C = egin{pmatrix} M_2 & \sqrt{2} m_W \, c_eta \ \sqrt{2} m_W \, s_eta & |\mu| \, \mathrm{e}^{i \Phi_\mu} \end{pmatrix}$$

BGCJAMHEFKD

I

Model	А	В	С	D	Ε	F	G	Н	Ι	J	K	L	Μ
$m_{1/2}$	600	250	400	525	300	1000	375	1500	350	750	1150	450	1900
m_0	140	100	90	125	1500	3450	120	419	180	300	1000	350	1500
aneta	5	10	10	10	10	10	20	20	35	35	35	50	50
$\operatorname{sign}(\mu)$	+	+	+	—	+	+	+	+	+	+	—	+	+
$\alpha_s(m_Z)$	120	123	121	121	123	120	122	117	122	119	117	121	116
m_t	175	175	175	175	171	171	175	175	175	175	175	175	175
Masses													
$ \mu(m_Z) $	739	332	501	633	239	522	468	1517	437	837	1185	537	1793
h^0	114	112	115	115	112	115	116	121	116	120	118	118	123
H^{0}	884	382	577	737	1509	3495	520	1794	449	876	1071	491	1732
A^0	883	381	576	736	1509	3495	520	1794	449	876	1071	491	1732
H^{\pm}	887	389	582	741	1511	3496	526	1796	457	880	1075	499	1734
χ_1^0	252	98	164	221	119	434	153	664	143	321	506	188	855
χ^0_2	482	182	310	425	199	546	291	1274	271	617	976	360	1648
χ^0_3	759	345	517	654	255	548	486	1585	462	890	1270	585	2032
χ_4^0	774	364	533	661	318	887	501	1595	476	900	1278	597	2036
χ_1^{\pm}	482	181	310	425	194	537	291	1274	271	617	976	360	1648
χ_2^{\pm}	774	365	533	663	318	888	502	1596	478	901	1279	598	2036
\widetilde{g}	1299	582	893	1148	697	2108	843	3026	792	1593	2363	994	3768
e_L, μ_L	431	204	290	379	1514	3512	286	1077	302	587	1257	466	1949
e_R, μ_R	271	145	182	239	1505	3471	192	705	228	415	1091	392	1661
$ u_e, u_\mu$	424	188	279	371	1512	3511	275	1074	292	582	1255	459	1947
$ au_1$	269	137	175	233	1492	3443	166	664	159	334	951	242	1198
$ au_2$	431	208	292	380	1508	3498	292	1067	313	579	1206	447	1778
$ u_{ au}$	424	187	279	370	1506	3497	271	1062	280	561	1199	417	1772
u_L, c_L	1199	547	828	1061	1615	3906	787	2771	752	1486	2360	978	3703
u_R, c_R	1148	528	797	1019	1606	3864	757	2637	724	1422	2267	943	3544
d_L, s_L	1202	553	832	1064	1617	3906	791	2772	756	1488	2361	981	3704
d_R, s_R	1141	527	793	1014	1606	3858	754	2617	721	1413	2254	939	3521
t_1	893	392	612	804	1029	2574	582	2117	550	1122	1739	714	2742
t_2	1141	571	813	1010	1363	3326	771	2545	728	1363	2017	894	3196
b_1	1098	501	759	973	1354	3319	711	2522	656	1316	1960	821	3156
b_2	1141	528	792	1009	1594	3832	750	2580	708	1368	2026	887	3216

Post-LEP CMSSM Benchmarks of J. Ellis et al.

General Higgs potential with one Higgs doublet:

$$V_{\mathcal{SSB}} = \lambda \left\{ \left[\Phi^\dagger \Phi - rac{v^2}{2}
ight]^2 + \sum\limits_{n \geq 3} rac{g^{2(n-2)}}{\Lambda^{2(n-2)}} rac{a_n}{(n-1)^2} \left[\Phi^\dagger \Phi - rac{v^2}{2}
ight]^n
ight\}$$

To leading order in $1/\Lambda$ the potential is:

$$egin{aligned} V_{\mathcal{SSB}} &= \; rac{1}{2} M_{H}^{2} \left\{ H^{2} + rac{g}{M_{W}} H(arphi^{+}arphi^{-} + rac{arphi_{3}^{2}}{2}) + rac{g}{2M_{W}} h_{3} H^{3}
ight. \ &+ h_{4} \left(rac{g}{4M_{W}}
ight)^{2} H^{4} + h_{4}^{\prime} \left(rac{g}{2M_{W}}
ight)^{2} H^{2} (arphi^{+}arphi^{-} + rac{arphi_{3}^{2}}{2})
ight\} \end{aligned}$$

Non-SM part parameterized by δh_3 :

$$egin{array}{rcl} h_3 &=& 1 + a_3 rac{M_W^2}{\Lambda^2} = 1 + \delta h_3 \ h_4 &=& 1 + 6 \delta h_3 \ h_4' &=& 1 + 3 \delta h_3 \end{array}$$

(F. Boudjema and E. Chopin, hep-ph/9507396)

In MSSM the trilinear coupling of the lightest Higgs:

-1

$$egin{aligned} \lambda_{hhh} &= -rac{1}{2v^2} s_{eta - lpha} \; M_h^2 + \ && rac{c_{eta - lpha}^2}{s_eta c_eta} \left(s_{eta - lpha} \lambda_a + c_{eta - lpha} \lambda_b + rac{(M_A^2 - M_h^2)}{2v^2} (s_{2eta} s_{eta - lpha} + c_{2eta} c_{eta - lpha})
ight) \end{aligned}$$

Non-MSSM part parameterized by λ_a , λ_b

For $\cos^2(\beta - \alpha) \rightarrow 0$ the trilinear coupling is not sensitive to beyond-MSSM parameters:

$$\lambda_{hhh} = -rac{1}{2v^2} s_{eta-lpha} \; M_h^2$$

(F. Boudjema and A. Semenov, hep-ph/0201219)

Summary

- Clear understanding of e^+e^- physics case beyond $\sqrt{s} = 0.5$ TeV would help LC technology comparison.
- Analyze specific physics processes at energies of $\sqrt{s} = 0.8$, 1.0, 1.2 and 1.5 TeV.
- Attempt to identify the energy scale beyond $\sqrt{s} = 500$ GeV which the next LC should reach through energy expansion.