

the LINX proposal Linear collider IR-FF facility at SLAC

LCD Study Group meeting January 22, 2002

Andrei Seryi, SLAC

Why do we need IR-FF test facility?

- Interaction Region and Final Focus are two quite critical areas of Linear Collider
- Need to address the challenge of 10⁴ luminosity increase (SLC-> NLC)

 Need to reduce start-up time of LC to win the battle, train your army

LINX letter of intent

IDRAFT

Letter of Intent for the LINX Test Facility at SLAC

NLC Collaboration

Stanford Linear Accelerator Center Lawrence Livermore National Laboratory Lawrence Berkeley National Laboratory Fermi National Laboratory

> Martin Breidenbach Franz-Josef Decker

Stanford Linear Accelerator Center

Philip Burrows Simon Jolly Glen White

Oxford University, Oxford, England

Thomas Mattison

University of British Columbia, Vancouver, Canada

Goals of LINX test facility

- collisions at SLC	with ~50nm beams	NLC
 Beam Energy: DR emittances: 	30 GeV VE. =1100/50E-8m	250 GeV 300/2
• FF emittances:	$\gamma \varepsilon_{x,y} = 1600/160E-8m$	360/4
• IP Betas:	$\beta_x = 8$ mm $\beta_y = 0.11$ mm	same
• Bunch length:	$\sigma_{z}=0.1 - 1.0$ mm	0.11mm
• IP spot sizes:	$\sigma_{x v}^{-}$ =1500/55nm	243/3nm
• Beam currents:	N±= 6e9	7.5e9

- Test stabilization techniques proposed for future linear colliders and demonstrate nanometer stability of colliding beams
- Investigate new optical techniques for control of beam background
- Provide a facility where ultra-small and ultra-short beams can be used for a variety of other experiments *(GAMMA-GAMMA)*

LINX IR and optics

Andrei Seryi, January 22, 2002

Nanometer stability of colliding beams

Beam-beam deflection gives 1nm stability resolution

Colliding beams provide a Direct Model-Independent test of any engineering solutions to the final doublet stability problem (Not possible at FFTB)

Controlling beam background with nonlinear elements

- Two octupole doublets give tail folding by ~ 4 times in terms of beam size in FD
- This lead to relaxing collimation requirements by ~ a factor of 4
- Confidence that comes from an actual demonstration may permit great savings in collimator design, radiation shielding, and muon shielding

Technical feasibility of LINX

Parasitic to PEP-II Operation: 30 HZ, 30 GeV Damping Rings:

Linac: No different than 1994-1997 FFTB runs and recent (E150,E157) FFTB plasma experiments

Arcs: 30 GeV running reduces SR emittance growth to ~0

Final Focus: Optics are "EASY"; need only: New doublet w/ sextupoles New octupole pair to investigate tail control

Step 2:Demonstrate that the SLC beamlines can still deliver high quality colliding beams.DECISION POINT TO PROCEED & CONSTRUCT DOUBLETStep 3:Produce ultra-short beams.Step 4:Evaluate the effectiveness of background suppression with the new Final Focus optics.Step 5:Produce ultra-low emittance beams.Step 6:Develop fast intra-pulse feedback hardware INSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.	Step 1:	Successfully transport e+ and e- beams to the north and south beam dumps respectively.
DECISION POINT TO PROCEED & CONSTRUCT DOUBLETStep 3:Produce ultra-short beams.Step 4:Evaluate the effectiveness of background suppression with the new Final Focus optics.Step 5:Produce ultra-low emittance beams.Step 6:Develop fast intra-pulse feedback hardware INSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.Step 8:Demonstrate nanometer stabilization at the IP.	Step 2:	Demonstrate that the SLC beamlines can still deliver high quality colliding beams.
Step 3:Produce ultra-short beams.Step 4:Evaluate the effectiveness of background suppression with the new Final Focus optics.Step 5:Produce ultra-low emittance beams.Step 6:Develop fast intra-pulse feedback hardware INSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.	DECISION POINT TO PROCEED & CONSTRUCT DOUBLET	
Step 4:Evaluate the effectiveness of background suppression with the new Final Focus optics.Step 5:Produce ultra-low emittance beams.Step 6:Develop fast intra-pulse feedback hardware INSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.	Step 3:	Produce ultra-short beams.
Step 5:Produce ultra-low emittance beams.Step 6:Develop fast intra-pulse feedback hardwareINSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.	Step 4:	Evaluate the effectiveness of background suppression with the new Final Focus optics.
Step 6:Develop fast intra-pulse feedback hardwareINSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.	Step 5:	Produce ultra-low emittance beams.
INSTALL NEW DOUBLETStep 7:Produce < 100 nm vertical beam size at the IP.Step 8:Demonstrate nanometer stabilization at the IP.	Step 6:	Develop fast intra-pulse feedback hardware
Step 7:Produce < 100 nm vertical beam size at the IP.	INSTALL NEW DOUBLET	
Step 8: Demonstrate nanometer stabilization at the IP.	Step 7:	Produce < 100 nm vertical beam size at the IP.
	Step 8:	Demonstrate nanometer stabilization at the IP.

Recent progress

- Started vacuum survey of Arcs and FF in September 2001
- Leaks localized or repaired
- Want to concentrate on the South arc, put beam through, do background study (hope for June 2002)
- Need to make several small repairs in BSY started work in January 2002, for two days. Need to be continued - will have to wait for the next ROD

Summary

LINX engineering test facility is been considered to be created at SLAC on the base of existing hardware *it will help to:*

Test stabilization techniques proposed for future linear colliders and demonstrate nanometer stability of colliding beams

Investigate new optical techniques for control of beam background

Provide a facility where ultra-small and ultra-short beams can be used for a variety of other experiments, e.g.

> Gamma-gamma collisions, at first technical development, then possibly a physics run