

Geometry: Input (II)

<u>New way: automatically building GEANT4 geometry from ASCI1</u> <u>files</u>

© Easy to understad

- ASCII files with simple tags
- :VOLU :MB1S BOX "M_B_Air" 3 107.6 20.55 123.55
- :POS :MB1S 1 :MBXX :R270 :ONLY 430.55 38.3032 -1.25.0
- © Easy to maintain
 - Change the ASCII file and no need to recompile
- [©] Big flexibility
 - Can simulate any detector by changing ASCII file
 - : VOLU : MB1S OFF and volume : MB1S and its daugthers will not be simulated
- © Easy coherence with other packages
 - Same files used for GEANT3 simulation, digitisation and reconstruction

GEANT4 in CMS

Pedro Arce(CERN/IFCA)

Geometry: Input (III)

Future way: automatically building GEANT4 geometry from XML files

XML based Detector Description Language (XML DDL)

- Single description inter-

face for the ideal detector

- Generic description . Materials
 - . Geometry

. Component approach

- Attaching specific Information to
 - . Components
 - . Subsets of Volumes

- Human

editable/readable

LC Anandahle

GEANT4 in CMS

Overlap Detection tool: principle

Shooting 2 geantinos in opposite direction along the same 'ray':

Overlap Detection tool: GUI, Navigation, Visualisation

GEANT4 in CMS

GEANT4 error propagator

***** What it does:

Needed for track reconstruction:

- Start with an initial track state (energy, position and direction with their errors) in some subdetector
- GEANT4e: calculates the track state in another surface of the detector

***** How it does it:

- Propagates average trajectory
- Computes average energy loss (positive or negative)
- Propagates errors:
 - Propagates errors along the trajectory
 - Adds fluctuation in multiple scattering
 - Adds fluctuation in energy loss
 - Adds errors of magnetic field

GEANT4 error propagator

* Status:

Needed for track reconstruction:

- Uses G4Transportation to propagate from an initial track state to a user defined surface (infinite plane) in the
 - GEANT4 geometry
 - GEANT4 magnetic field
- Propagates errors in case of no magnetic field (linear trajectory)

* Plans

- Propagate errors in magnetic field for different trajectory representations
 - Assume helix trajectory?
 - Calculate errors of RungeKutta?

- 5 events $H \rightarrow ZZ \rightarrow 4\mu$
- Full geometry and magnetic field
- Same production, tracking and generator cuts for all particles and materials
- Classical RungeKutta(4) integrator, DeltaChord= 0.1 mm

CMSIM (GEANT3) OSCAR (GEANT4) No tracks: 184894 No tracks: 175545 TIME: 166.25 TIME: 152.28 1112 tracks/s 1153 tracks/s

- Performance problems at low eta (big B) and low energy particles
 - GEANT4 magnetic field propagation too precise?
 - Currently tuning it (factor 10-100 in speed)

End 2001: Fully Functional Software

- Geometry and hits for all detectors tested
- Persistency for reconstruction
- Performance as good as CMSIM (GEANT3)
- First tests of physics results

End 2002: Production version

- Geometry rewritten using DDD
- Further tests of physics in OSCAR vs CMSIM
- Further tests of Testbeam data with GEANT4
- ⇒ OSCAR ready for massive production for physics TDR

CMS Physics TDR is planned to be written using OSCAR (due december 2004)

CMS ECAL testbeam in GEANT4

- Cuts in GEANT4 (only production cuts)
 - **0.005 mm** for every particle and material for preshower shower shape studies
 - 0.5 mm for energy resolution studies
 - GEANT4.2.ref02

0.5mm	PbWO4[keV]	Silicon [keV]	0.005mm	PbWO4 [keV]	Silicon [keV]
e-	640	335	e-	34.3	6.6
Gamma	60	5	Gamma	2.6	0.99

- Cuts in GEANT3 (production and tracking cuts)
 - 10 keV for e-/e+ and gamma in crystals and preshower
 - Delta rays turned on/off for energy resolution studies
 - Delta rays turned on for preshower shower profiles
 - GEANT3.21/13

- Good agreement between data and GEANT3 or GEANT4 simulation
- Some GEANT4 distributions slightly different from data
 - Need to tune the cuts as they were tuned for GEANT3