Vertex detection for a charm tag in $e^+e^- \rightarrow W^+W^-$

Wolfgang Walkowiak, UC Santa Cruz

LCD Study Group Meeting, SLAC, 30 October 2001

Wolfgang Walkowiak

Introduction

Study $e^+e^- \rightarrow W^+W^-$:

- ► Very high $M_H \Rightarrow \sigma_W +_W$ can show deviations from SM (anomalous gauge boson couplings, $W_L^+ W_L^-$ rescattering).
- Presented in this talk:
 - Charm-tag using vertex multiplicities for W⁺W⁻ helicity analysis.
 - Now uses DURHAM jetfinder and stricter lcosθ_wl cut

Helicity analysis

Forward WW scattering dominated by T-channel process (v exchange)
σ_{WLWL}~ sin²(Θ)
Sensitive to WL⁺WL⁻ in backward direction

Wolfgang Walkowiak

Helicity analysis

- Quantities to be measured:
 - cos(Θ) production angle
 - Helicity angles of W decay products in W rest frames: cos(θ), φ, cos(θ), φ
- Use likelihood fit to extract L_{9R} and L_{9L} or $Re(F_T)$ and $Im(F_T)$.

LCD Study Group Meeting, SLAC, 30 October 2001

Flavor tagging

Lepton is expected to be identified, but there is an ambiguity on hadronic side in W decay tensor:

$$\bar{\boldsymbol{H}}_{\bar{\lambda}}^{\bar{\lambda}} = \left[\bar{\boldsymbol{D}}_{\bar{\lambda}}^{\bar{\lambda}}, (\cos(\bar{\boldsymbol{\vartheta}}^*), \bar{\boldsymbol{\varphi}}^*) + \bar{\boldsymbol{D}}_{\bar{\lambda}}^{\bar{\lambda}}, (-\cos(\bar{\boldsymbol{\vartheta}}^*), \bar{\boldsymbol{\varphi}}^* + \pi) \right]$$

- Loosing information by averaging over these two states.
- Need flavor tagging to make this information accessible.

Expected effect of c-tagging

MC Samples and Analysis

- 10000 Pandora-Pythia $e^+e^- \rightarrow W^+W^-$ events (SM) including a TechniRho at 1600 GeV at $E_{cms} = 500$, 1000,1500 GeV with one W decaying leptonically, the other hadronically.
- Simplify: Use W \rightarrow Iv with I = e, μ only.
- Use events with $|\cos \Theta_w| < 0.90$ only.
- Use Fast Monte Carlo of Icd package (JAS) for track simulation.
- Vectors for neutral particles are created from MC truth information. (Only used for jet finding.)
- DURHAM jet finder used to create exactly two jets.
- Vertex finding: ZvTopVertexer (like SLD's ZVTOP).

Topological vertex finding

ZVTOP: topological vertexing developed by SLD
 (D.J.Jackson, NIM A388 247-253,1997)
 Java implementation:

ZvTopVertexer

(Vertex axes 1000x enlarged)

Wolfgang Walkowiak

Vertex multiplicites in jets

Vertex multiplicites in jets -- Correlations --

- Very simple c-tag: \geq 2 vertices in jet found.
- Field A in left plot gives the desired events, field C and fields A, B and C in right plot give mistags.
- Assume 50% chance to tag the correct jet in field B of left plot.

	durham j	etfinder &&	$ \cos \Theta_w < 0$
Sample	500 GeV	1000 GeV	1500 GeV
c-tag efficiency	59.6%	61.2%	62.6%
c-tag purity	86.9%	89.6%	92.1%
Analyzing power	73.9%	79.3%	84.3%
Q=eff*A*A	32.5%	38.5%	44.4%

Exclusion of K_s^0 verticies important! (~10% purity gain) No b-jets in $e^+e^- \rightarrow W^+W^-$ events.

Wolfgang Walkowiak

Table is for SD detector design.					
	DURHAM	jetfinder &8	k cos $\Theta_{\sf W}$ <	0.90	
Sample	500 GeV	1000 GeV	1500 GeV		
c-tag efficiency	60.1%	61.5%	62.5%		
c-tag purity	87.8%	89.6%	90.9%		
Analyzing power	75.5%	79.2%	81.8%		
Q=ett*A*A	34.3%	38.6%	41.8%		

Only minor differences to LD design.
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

C-tag efficiency and purity

Wolfgang Walkowiak

C-tag efficiency and purity

Wolfgang Walkowiak

Plans

Study additional variables to separate c- and non c-jets:
 Secondary vertex related: M_{ptcor}, p_{secVtx}, d_{secVtx}, N_{tracks.secVtx}

- Imp_{max} Largest impact parameter of tracks
- N_{imp} number of tracks with considerable impact parameter
- P_{max} momentum of leading track
- Use NN technique for c-tag Question: Size of training sample needed?
 Working on ghosttrack algorithm for ZvTopVertexer

Conclusions

- Samples of e⁺e⁻→ W⁺W⁻ events including a TechniRho with m_{TechniRho} = 1.6 TeV at three different LC energies have been simulated and passed through the LCD fast detector simulation to study the power of a charm tag using topological vertexing.
- Charm tagging efficiencies of ca. 61% with purities of 90 % are reached (in absence of backgrounds other than the W→u x decay) with a simple multiplicity tag.
- An slight increase in purity and efficiency with rising LC energy is seen.
- No significant differences between the LD and SD detector designs have been observed.

Table is for LD de	etector des	ign. etfinder &&	cos ⊖ _w < 0.99
Sample	500 GeV	1000 GeV	1500 GeV
c-tag efficiency	58.9%	61.2%	62.6%
c-tag purity	80.4%	89.6%	91.2%
Analyzing power	60.7%	79.3%	82.4%
Q=eff*A*A	21.7%	38.5%	42.5%
Exclusion of K ⁰ _s v	erticies im	portant! (\sim	10% purity gain

■ No b-jets in $e^+e^- \rightarrow W^+W^-$ events.

Wolfgang Walkowiak

Table is for SD de	etector des DURHAM	sign. <mark>ietfinder &8</mark>	k cos Θ.,, <	0.99
Sample	500 GeV	1000 GeV	1500 GeV	
c-tag efficiency	59.7%	61.2%	62.6%	
c-tag purity	80.6%	87.7%	90.1%	
Analyzing power	61.3%	75.4%	80.3%	
Q=eff*A*A	22.4%	34.8%	40.3%	

Only minor differences to LD design.
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

Table is for LD detector design.			Preliminary!
	JADE	jetfinder &	& $ \cos \Theta_w < 0.90$
Sample	500 GeV	1000 GeV	1500 GeV
c-tag efficiency	60.1%	61.7%	62.3%
c-tag purity	86.7%	90.0%	92.0%
Analyzing power	73.5%	80.0%	84.0%
Q=eff*A*A	32.5%	39.5%	43.9%

Exclusion of K⁰_s verticies important! (~10% purity gain)
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

Table is for SD detector design.			Preliminary!	
	JADE	jetfinder &	&	.90
Sample	500 GeV	1000 GeV	1500 GeV	
c-tag efficiency	60.5%	61.4%	62.0%	
c-tag purity	87.5%	89.8%	91.3%	
Analyzing power	75.0%	79.6%	82.6%	
Q=eff*A*A	34.0%	38.9%	42.2%	

Only marginal differences to LD design.
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

Table is for LD detector design.			Preliminary!
	JADE	jetfinder &	& cos ⊖ _w < 0.99
Sample	500 GeV	1000 GeV	1500 GeV
c-tag efficiency	59.5%	61.6%	62.1%
c-tag purity	80.0%	87.7%	90.9%
Analyzing power	59.9%	75.4%	81.9%
Q=eff*A*A	21.4%	35.0%	41.6%

Exclusion of K⁰_s verticies important! (~10% purity gain)
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

Table is for SD detector design.		sign.	Preliminary!		
	JADE	jetfinder &	& $ \cos \Theta_w < \cos \Theta_w $	0.99	
Sample	500 GeV	1000 GeV	1500 GeV		
c-tag efficiency	59.9%	61.2%	61.9%		
c-tag purity	80.9%	87.7%	90.2%		
Analyzing power Q=eff*A*A	61.8% 22.9%	75.4% 34.8%	80.4% 40.0%		

Only marginal differences to LD design.
 No b-jets in e⁺e⁻ → W⁺W⁻ events.

C-tag efficiency and purity

Wolfgang Walkowiak

C-tag efficiency and purity

Wolfgang Walkowiak