Linear Collider Higgs Studies: Snowmass & Beyond

Outline:

- Our Snowmass "shopping list" and what was done with each item (remaining projects, i.e., for Chicago)
- Updated status of Snowmass analyses
- Not including CLIC and $\gamma\gamma$ Higgs studies...

Linear Collider Detector (LCD) Working Group Meeting SLAC, Stanford, CA 16 October 2001

> Rick Van Kooten Indiana University

Where we stand, code:

The Questions and Projects

SM Higgs

- Q: How well can one measure mass and width as a function of Higgs mass?
 - P
- *SM* Haijun Yang, lighter Higgs, writeup in
- Concentrate on optimal √s, and thresh. scan option at lower energy IP

 Impact of beamstrahlung spectrum and how well can it *really* be measured (compare NLC/TESLA)

 Full simulation and strategy for measuring width directly for masses > 200 GeV Q: How well can one measure Br's and couplings as a function of Higgs mass and √s?

• Dijet resolution and detector needed for separation of *WW*, *ZZ* decays (into hadrons)?

• Extraction of (indirect) width using all available into; full correlations of errors, use of HFITTER.

⇒ What about $M_h > 170$ GeV, mostly *WW, ZZ* decays

Q: Is γγ needed for total Higgs width for light Higgs?
 Projects:

• Q: What is the optimal experimental program to determine spin / parity / CP nature of Higgs?

• Mixed CP? / CP violation?

Full simulations:

 $(Yukawa) \Rightarrow t t H$, energy and angular analysis

Higgs

 $\Rightarrow H \rightarrow t t, H \rightarrow \tau \tau$ polarization "self-analysis"

- Q: What is the optimal program to determine Higgs self couplings?
 - ? M
 In multiple Higgs production, what dijet resolution, detector performance, luminosity needed? (full simulations)
 ⇒ How high can go in Higgs mass?

• Any way at all to get quartic couplings?

- Q: What is the utility of positron polarization in Higgs measurements?
 - Take most beneficial case, full simulation and backgrounds

SUSY

- Q: How far in reach to detect presence of *H*/*A* states? With what precision?
 - See previous project on correlated Br and σ errors, which errors important? use of HFITTER
- Q: How far in mass can one still disentangle the close to degenerate *H*/*A* states ?

• Full simulations and realistic backgs.

 Q: Can one measure tanβ from SUSY Higgs states alone (in a fully model independent way)?

- Simulations of measurements of H/A masses and branching ratios (remember, no handy Z recoil for the Br's!!)
- Q: How well can one measure an invisible branching ratio (particularly if small)?
 - SM
- Full simulations with realistic backgrounds of Z recoiling against "nothing"

• ...with large width too...

- Q: What additional measurements possible if other SUSY particles accessible?
 - Simulations of measurement of Br for e.g., $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

(P1: interplay between

 $h
ightarrow { ilde\chi}_1^0 { ilde\chi}_2^0$ and e.g. ${ ilde\chi}_1^\pm
ightarrow h X$)

 Br's for other unusual decay modes (e.g., P1: radions, gg, ...)

 Other "elusive" models, e.g., nasty 2HDM, need direct observation of *H/A/H*[±] states

"Rare" Br's

♦ Higgs analyses mostly concerned with $e^+e \rightarrow H^0Z^0$ at $\overline{s} = 350 - 500$ GeV to profit from favourable kinematics and constraints.

♦ However HZ production cross-section never exceeds 120 fb and ZZ, $Z \rightarrow II q\bar{q}$ represents irreducible background.

♦ At higher energies $H^0 v \bar{v}$ becomes the dominant mode with $\log \frac{s}{M_H^2}$.

TESLA at $\overline{s} = 0.8$ TeV with L = 1 ab ¹

◆ Feasible to reduce H→WW and ZZ by topology and b-tagging
 ◆ At ^p_s = 350 GeV dominant e⁺ e → ZZ background limits use of Z !hadrons

A comparison of HZ and H⁻Processes Estimated Bkg and Nb(H \rightarrow bb) for ^RL = 1 ab ¹

for probing gibb for a heavy Higgs boson.

H⁰
$$\rightarrow$$
 $\mu^+\mu^-$

Battaglia, Desch

• Reconstruct 2 μ s + $E_{missing}$ final states, cut on M_{ecoil} and $E_{\mu\mu}$ • Background estimated from ZZvv, WWvv and inclusive $\mu\mu$ processes evaluated with Comphep w/o Higgs contribution

♦ Signal of H→µµ can be extracted for M_H ~120 GeV and g_{Hµµ} estimated with ~15 % accuracy at TESLA-800 with 1 ab ¹

SM HIGGS δ_{BR}/BR RESULTS

J. Brau, C. Potter and M. Iwasaki University of Oregon Snowmass 2001

Mode	115	120	140	160	180	200
$h_{SM} \to WW^{\star}$	0.16	0.10	0.03	0.02	0.03	0.04
$h_{SM} \rightarrow b\overline{b}$	0.027	0.029	0.038	0.13	0.59	-
$h_{SM} \to \tau^+ \tau^-$	0.07	0.08	0.10	0.36	-	-
$h_{SM} \to c\overline{c}$	0.31	0.39	0.44	-	-	-
$h_{SM} \rightarrow gg$	0.16	0.18	0.23	-	-	-
$h_{SM} \to c\bar{c} + gg$	g0.15	0.16	0.20	-	-	-

We assume \sqrt{s} =500 GeV, 250 fb^{-1} running with $P(e^{-}) = -0.8$, 250 fb^{-1} running with $P(e^{-}) = +0.8$, $e^+e^- \rightarrow Zh_{SM}$ production only, imperfect hadronic Z decay reconstruction and the NLD Large (L) Detector with standard vertex detector configuration.

If we assume, for example, $\sqrt{s}=350$ GeV, 1 ab^{-1} , both $e^+e^- \rightarrow Zh_{SM}$ and $e^+e^- \rightarrow \nu\nu H$ production modes and perfect hadronic Z decay reconstruction, we obtain $\delta_{BR}/BR \approx 0.19$ for $h_{SM} \rightarrow b\bar{b}$ when $m_{h_{SM}}=180$ GeV.

- Ramon Miquel, Manel Martinez *ttH* for Yukawa top threshold, nearly complete at Snowmass (Yukawa coupling difficult, 30% error best case, only for lighter Higgs)
- Ari Kiiskninen, branching ratio to *tt* in *ZH*

- Sherry Towers: PYTHIA successfully modified to include CP violation in the Higgs sector (by mixing the MSSM Higgs states), mods. available from Sherry, interested into continuing for Chicago meeting
- Gary Bowers: Pandora can now do the CP odd case; analysis package setup awaiting for code from Peskin. CP results in the next weeks.

- Q: What is the optimal program to determine Higgs self couplings?
 - In multiple Higgs production, what dijet resolution, detector performance, luminosity needed? (full simulations)

Wei-Ming Yao: Jet energy resolution and study of $ZHH \rightarrow vvbbbb$ ("finish in next weeks")

• Separation of *hhh* vs. *ZZh* components via kinematics:

Yao

 Simulations of measurements of H/A masses and branching ratios (remember, no handy Z recoil for the Br's!!)

John Butler, John Hobbs: *HA* pair production, 1 TeV each of mass of 400–475 GeV (i.e., ~degenerate), large tan β so mostly decays into *bb* for each

Four *b*-jets, choose pairing with minimum invariant mass difference, dominant background is *t t*, charm mistagged as *b*:

Both b's hadronic decay One b semileptonic Both b's semileptonic

5σ observability with 50 fb⁻¹

- Q: How well can one measure an invisible branching ratio (particularly if small)?
 - Full simulations with realistic backgrounds of Z recoiling against "nothing"

RvK

- *hZ* → all Explicitly search for Z recoiling against "nothing" (previously, e.g., [1 -ΣBr's])
- Test case, e.g., Wells et al., hep-ph/002178, δ = 4 extra dimensions, Br(h → invis) = 38%, Γ_{inv} ~ 2 MeV

• Add hadronic Z decays: with $\delta E/E = 40\%/\text{sqrt}(E)$,

 $\frac{\delta Br(h \rightarrow invis)}{Br(h \rightarrow invis)} \sim 7.5\%$

• Using info from Wells et al., hep-ph/002178 (see next page), limits on no. extra dimensions δ vs Higgs mass

- Q: What additional measurements possible if other SUSY particles accessible?
 - Simulations of measurement of Br for e.g., $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

⇒ Graf interested, Mrenna, RvK were getting four-vectors generated

Summary

- Definitely no lack of projects! New people did become involved at Snowmass, but arm-twisting still needed....
- Grab a **P** or **SM** !
- Broad overview of needs: Light Higgs: filling in few Br's, serious CP studies

Heavy/intermediate mass Higgs: Lots of studies still to do/to continue (heavy properties, *HA* and implications)

Overall: intelligent global fits, HFITTER, expertise in North American group