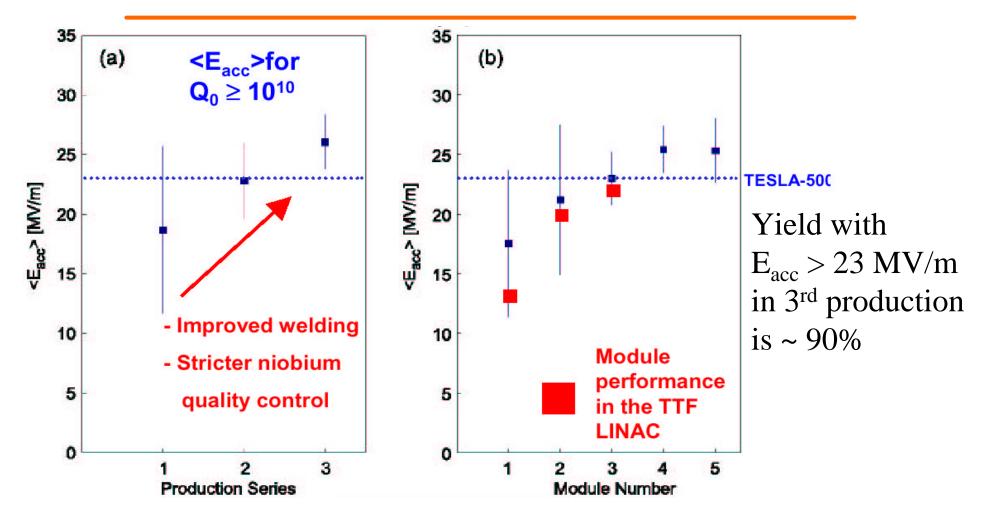
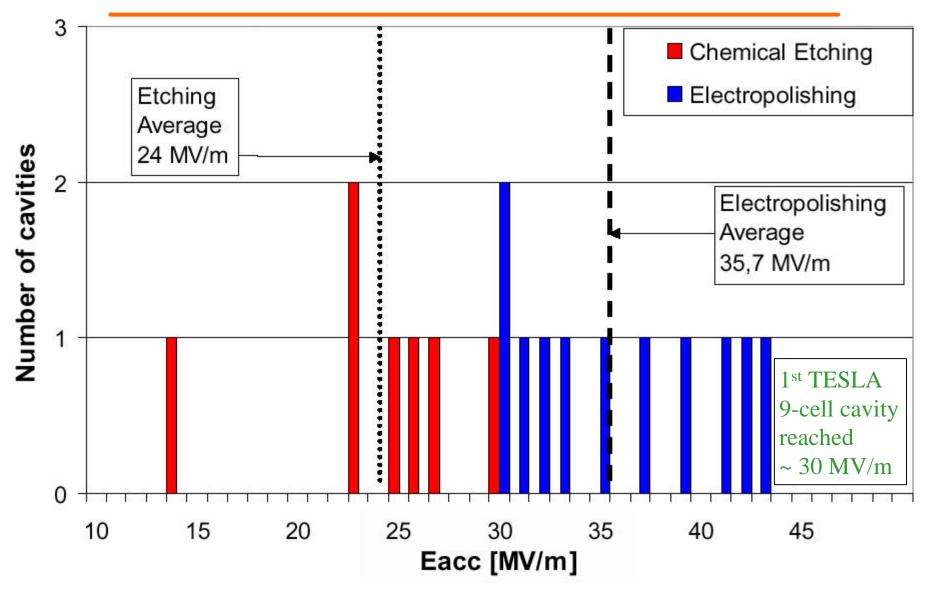



### Outline

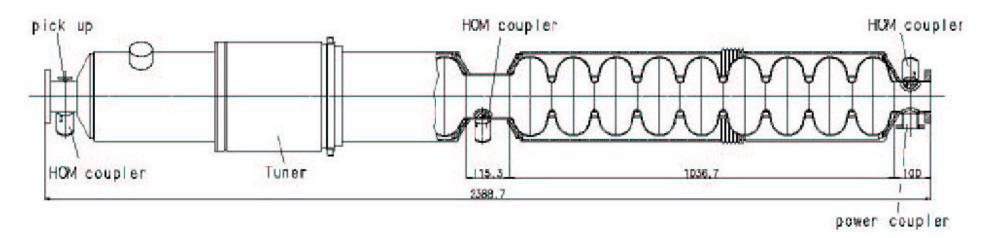

- RF systems
  - Cavities, klystrons, and TTF operation
- Luminosity issues
  - Parameters
  - Damping rings and sources
  - Main linac dynamics and alignment
  - Beam delivery systems
  - IP issues
- TESLA could be built without question
- Point out issues that should be considered for technical comparison and correct some mis-information

### **TESLA Test Facility**


- Operating since 1997
  - 7000 hrs at ~1Hz and  $\frac{1}{2}$  length rf pulses with two 8-cavity modules
  - Delivering beam for SASE FEL
    - Good for operational discipline- bad for machine development!
    - 17 MV/m typical gradient
  - Some dedicated TESLA-type operation
    - Measured HOMs
    - Demonstrated beam loading compensation
    - Gradients up to 23 MV/m (TESLA-500 goal) with single module operation (10's of hours at low rate)

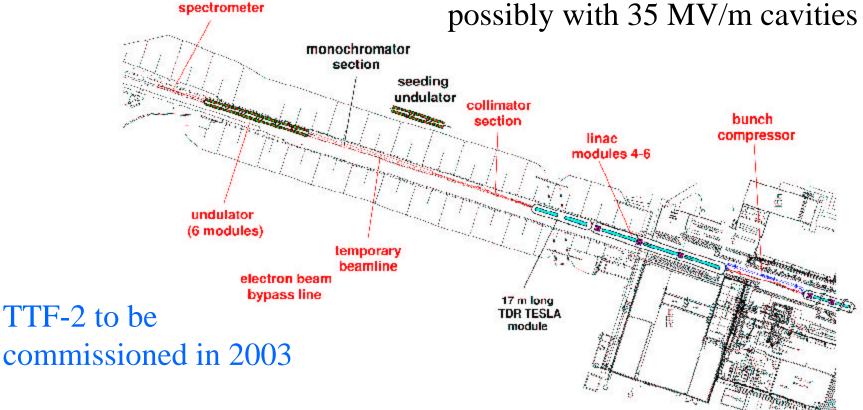


#### **Gradient Achievement!**




#### **Electropolishing versus Etching**




### **Super-Structures**

- Super-structure will increase filling factor from 74% to 79%
  - TESLA-500 gradient would be 22 MV/m
  - TESLA-800 gradient would be 35 MV/m
- Super-structures reduce number of couplers by 50% and HOM couplers by 25%
- 2x7 super-structure to be tested next year and 2x9 later?
- Designing new couplers for super-structures



### **RF System Tests**

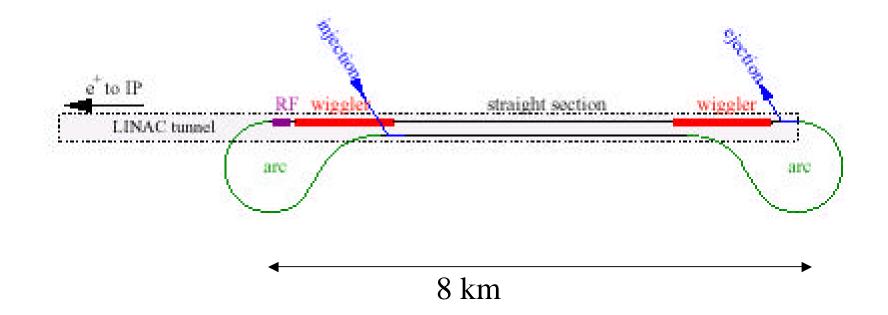
- Test superstructure concept with 2x7 cavities in 2002
- Build 2 more 8-cavity cryo-modules for TTF-2 (6 total)
- Build one 17m 12-cavity TDR-style module in ~ 2004



## **Upgrade Routes and Costs**

- NLC and TESLA costs are similar in value for 500 GeV
- Baseline upgrade route: install 35 MV/m cavities at onset, double rf system, upgrade cryo plant
- Assuming initial installation of 35 MV/m cavities, cost to upgrade to 800 GeV cms is 20% of initial project cost
- Upgrade from 800 GeV to 1 TeV is another 25% for a total of 45% of the initial project cost
- If cavities also have to be replaced, then the upgrad cost would be roughly 85% of the initial cost

#### **Nominal Parameters**


| NLC and TESLA Parameters                                             |           |          |           |           |  |  |  |
|----------------------------------------------------------------------|-----------|----------|-----------|-----------|--|--|--|
|                                                                      | Stage 1   |          | Stage 2   |           |  |  |  |
|                                                                      | NLC       | TESLA    | NLC       | TESLA     |  |  |  |
| CMS Energy (GeV)                                                     | 500       | 500      | 1000      | 800       |  |  |  |
| Luminosity (10 <sup>33</sup> )                                       | 20        | 34       | 34        | 58        |  |  |  |
| Repetition Rate (Hz)                                                 | 120       | 5        | 120       | 4         |  |  |  |
| Bunch Charge (10 <sup>10</sup> )                                     | 0.75      | 2        | 0.75      | 1.4       |  |  |  |
| Bunches/RF Pulse                                                     | 190       | 2820     | 190       | 4886      |  |  |  |
| Bunch Separation (ns)                                                | 1.4       | 337      | 1.4       | 176       |  |  |  |
| Eff. Gradient (MV/m)                                                 | 50.2      | 23.4     | 50.2      | 35        |  |  |  |
| Injected $\gamma \epsilon_x / \gamma \epsilon_y$ (10 <sup>-8</sup> ) | 300 / 2   | 1000 / 2 | 300 / 2   | 800 / 1   |  |  |  |
| $\gamma \epsilon_x$ at IP (10 <sup>-8</sup> m-rad)                   | 360       | 1000     | 360       | 800       |  |  |  |
| <b>ge</b> y at IP (10 <sup>-8</sup> m-rad)                           | 3.5       | 3        | 3.5       | 1.5       |  |  |  |
| $\beta_x$ / $\beta_y$ at IP (mm)                                     | 8/0.10    | 15 / 0.4 | 10/0.12   | 10/0.12   |  |  |  |
| s <sub>x</sub> / s <sub>y</sub> at IP (nm)                           | 245 / 2.7 | 553 / 5  | 190 / 2.1 | 391 / 2.8 |  |  |  |
| $\sigma_z$ at IP (um)                                                | 110       | 300      | 110       | 300       |  |  |  |
| Yave                                                                 | 0.11      |          | 0.29      |           |  |  |  |
| Pinch Enhancement                                                    | 1.43      | 2.1      | 1.49      | 2.1       |  |  |  |
| Beamstrahlung $\delta$ B (%)                                         | 4.7       | 3.2      | 10.2      | 4.3       |  |  |  |
| Photons per e+/e-                                                    | 1.2       | 2        | 1.3       | 2??       |  |  |  |
| Linac Length (km)                                                    | 6.3       | 30       | 12.8      | 30        |  |  |  |

• Most TESLA studies performed with 500 GeV parameters

 800 GeV parameters require improved damping ring performance and smaller IP emittances

## **Damping Rings**

- Generate beams needed for collision
  - Stability and emittance performance is essential!
  - TESLA ring is enormous because of long bunch train
  - Every bunch is extracted individually
  - Bunch separation of 25 ns requires fast stable kicker system



# **Damping Rings**

|                                            |         |        |       | 1             |         |
|--------------------------------------------|---------|--------|-------|---------------|---------|
|                                            | NLC/JLC | ATF    | ALS   | TESLA         | LEP     |
| circumference                              | 300     | 140    | 200   | 17,000        | 26,000  |
| / m                                        |         |        |       |               |         |
| energy / GeV                               | 2       | 1.3    | 1.9   | 5             | 46      |
| emittance $\epsilon_x$ /                   | 0.56    | 1.4    | 5.6   | 0.9           | -       |
| nm                                         |         |        |       |               |         |
| ratio $\varepsilon_v / \varepsilon_x / \%$ | 0.5     | 1 – 3  | 0.5 - | 0.2           | 0.5     |
|                                            |         | (0.5?) | 3     |               |         |
| damping time                               | 5       | 12 (no | 15    | 28            | 26      |
| / ms                                       |         | wigg.) |       |               |         |
| wiggler length                             | 45      | 8      | 6?    | 400           |         |
| / m                                        |         |        |       |               |         |
| space charge                               | 0.05    | ~0.02  |       | <b>0.23</b> → | 0.2 ( 4 |
| ΔQ                                         |         |        |       | 0.04          | IP)     |
|                                            |         |        |       | (x-y          |         |
|                                            |         |        |       | bump)         |         |

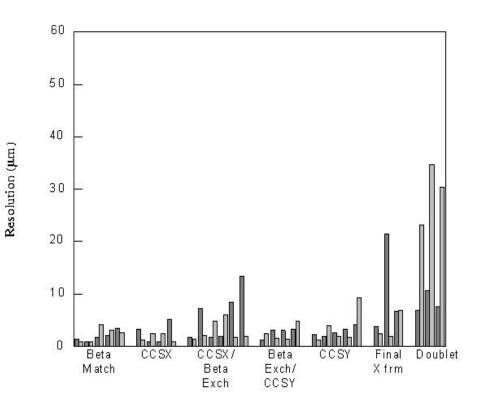
## **Damping Rings and Sources**

- TESLA positron production using novel system
  - Production efficiency depends on beam energy (only factor of 2 at 500 GeV cms and factor of 1 at 320 GeV cms)
  - Much lower yield between 200 and 300 GeV cms
  - Very interesting system but no plans to test
- TESLA has very novel damping rings with new dynamical issues:
  - 400~500 meters of wiggler
  - large incoherent space charge requiring coupling bumps
  - Ion trapping in straight sections and possible electron-cloud effects
  - DESY site has vertical bending to follow earth's curvature -- spin precession may drive imperfection and intrinsic spin resonances

## **Linac Dynamics**

- Two separate issues: Beam BreakUp (BBU) and 'static' alignment or emittance dilutions
  - BBU quasi-exponential amplification of incoming trajectory errors
    - Well understood and well simulated!
    - Multi-bunch BBU seen in 60's in SLAC linac
    - Single bunch BBU solved in SLC in mid-80's
    - Need to measure/model wakefields
  - Quasi-static emittance dilutions
    - Cavity alignment
    - Magnet alignment
    - Rf deflections
    - Stray fields
    - Use beam-based alignment!
    - Techniques developed and tested at SLC, FFTB, ASSET, and elsewhere!

### **Wakefield Summary**


- Wakefields have been measured in the TTF and the ASSET facility at SLAC using beam
  - Both wakefields are larger than design although sufficient
    - NLC errors were due to known construction errors
    - TESLA cavity errors were due to calculation errors
  - Both cases are not 'final' prototype cavities
    - Final prototypes available in 2003 for NLC and 2004? For TESLA
  - Devil is in the details!
- NLC aims to measure 'final' cavity prototype in 1.5 yrs
  - Must develop high gradient structure with low group velocity and wakefield control
- TESLA will choose between 2x9 superstructure and present single cavity design
  - 2x7 superstructure to be tested next year and 2x9 to follow

# **Beam-Based Alignment (e Tuning)**

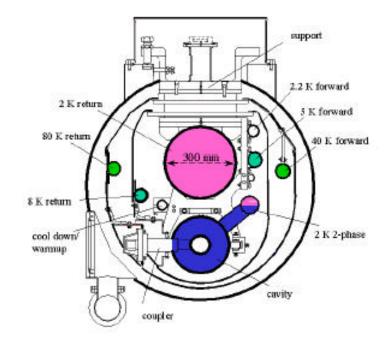
- To preserve emittance must correct **net** effect of individual dilution sources
- 'Local' correction directly correct dilution sources
  - Beam-based alignment tested SLC; FFTB; other beam lines
  - Most robust solution / least sensitive to energy or strength errors
- 'Quasi-Local' correction correct dilution effects over short distance, i.e. betatron wavelength
  - Dispersion-Free steering tested in SLC; LEP; other rings
  - Based on 'measurements' of dilution / sensitive to systematics
- 'Global' correction tune emittance using direct ε diagnostics
  - Directly corrects desired quantity / sensitive to phase advance tested SLC

## **FFTB Quadrupole Alignment**

- Used quadrupole shunting technique
  - Fit residuals ranged from 2  $\mu$ m to 30  $\mu$ m at the end of the beam line
    - FFTB optics poorly designed for beam-based alignment
    - Ran out of BPMs to measure deflected trajectory!
  - Dispersion measurements show errors in 1<sup>st</sup> two regions
    - $< 7 \ \mu m$  after alignment
      - Confirms technique
  - NLC designed for BBA with better diagnostics and smoother optics
    - Would expect a factor of 2 ~ 3 improvement
    - Other techniques as backup



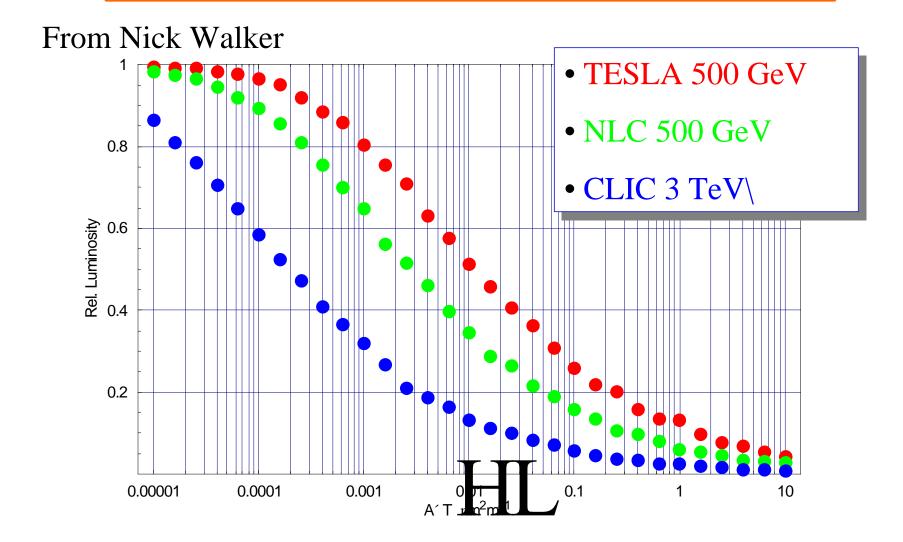
## **Rf Cavity Alignment**


- NLC structures (cavities) must be aligned to beam within 10  $\mu m$  rms for 20%  $\Delta\epsilon$ 
  - Every structure has two rf-BPMs with better than 2  $\mu$ m accuracy
  - Short-range wakefields depend on average of structure offset
  - Average position of the 6 structures on an rf girder and move girder endpoints with remotely controlled movers
- TESLA cavities must be aligned with 500  $\mu m$  rms for 15%  $\Delta\epsilon$ 
  - Achieved +/- 250 μm alignment within cryostat
  - But effects add  $\rightarrow$  tolerance for 12 cavities in cryostat ~ 140  $\mu$ m
  - Effect is worst at  $\frac{1}{4}\lambda_{\beta} = 150 \text{ m} \rightarrow \text{tolerance for cryostats} \sim 45 \,\mu\text{m}$
  - Either add read-backs on HOM dampers and steer beam to center of cavities or use global emittance bumps like those used in SLC to cancel dilutions
  - RF deflections imposes 100 urad tolerance on cavities for 5%  $\Delta\epsilon$

### **Other Issues**

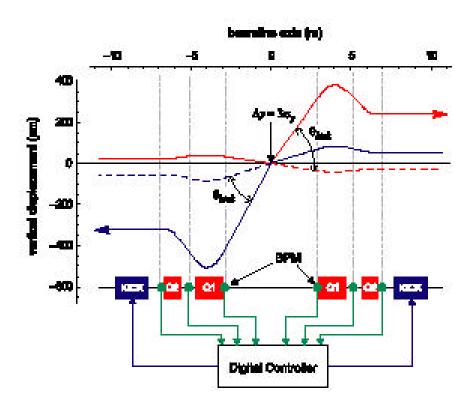
- TTF cannot measure effects like rf deflections or coupler asymmetries at the relevant level
- Main couplers are not a symmetric design some question about observations at TTF with regard to 'rf kicks'
- Rf kicks also arise from misaligned cavities as noted
- Skew fields from couplers was a significant effect in CEBAF linac (added many skew quads along linac) but this was not discussed

# **Alignment Summary?**


- TESLA cavities and quadrupoles are 'hung' off the Gas Return Pipe (pink)
- GRP is attached to the cryostat at 3 points
  - Each end moves by 26 mm during cool-down
  - Invar pole is used to maintain longitudinal position of cavities
- Cavities and quads are aligned with respect to GRP
- Module is aligned using 3 points referenced to GRP
- Linac is aligned using moveable tachymeter to +/- 200um



### **Beam Delivery Systems**


- TESLA BDS based on conventional lattice while NLC and CLIC are based on new Pantaleo FFS
- Alignment and jitter tolerances are similar
  - New FFS appears to have better performance but NLC and CLIC demand more from systems
- Low repetition rate makes ground motion a larger problem
  - Fast intra-train feedback at TESLA designed to handle fast beam jitter however does not yet treat spot size variation
  - No plans to test system; possible sensitivity to IR backgrounds
- Collimation system solved for NLC and solution can be applied to TESLA

#### **Beam Delivery Systems**



#### **IP Feedback**

- System seems very attractive and simple!
- But design relies on this for 100% of luminosity
- Sensitive to backgrounds, coupling from solenoid, etc



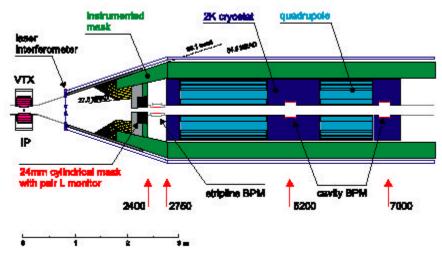
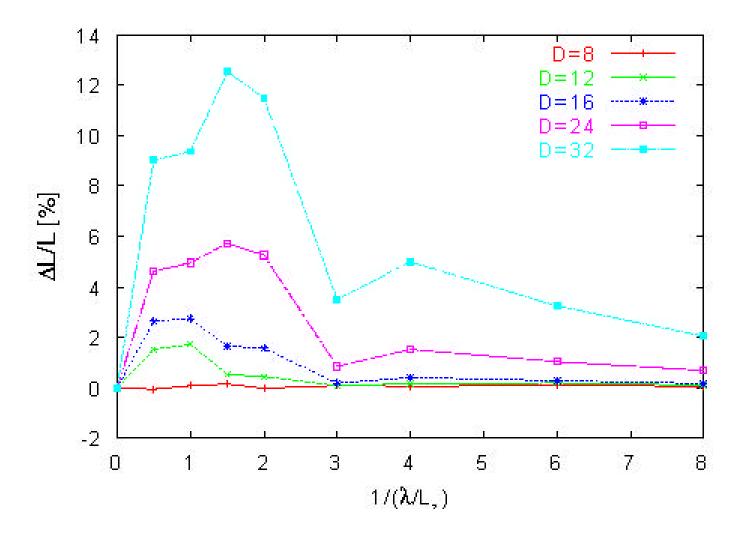



Figure 7.4.6: Interaction region layout.

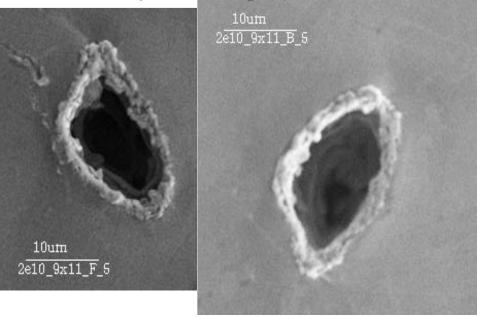
#### **Beam-Beam Issues**

- High disruption  $\rightarrow$  single bunch kink instability
  - Sensitive to IP position and angle offsets (IP feedback)
  - Sensitive to position correlations along the bunch, i.e.  $\Delta \epsilon$
  - Fractional luminosity decrease is much larger for correlated errors such as those from the linac or bunch compressor


|                                               | Uncorr. Δε           | Corr. Δε             |
|-----------------------------------------------|----------------------|----------------------|
| $L_{\text{design}} (\Delta \epsilon = 50\%)$  | $3.4 \times 10^{34}$ |                      |
| $L_0$ ( $\Delta \epsilon = 0\%$ i.e. from DR) | $4.1 \times 10^{34}$ | $4.1 \times 10^{34}$ |
| $L_{sim} (\Delta \epsilon = 10\%)$            | $3.9 \times 10^{34}$ | $3.2 \times 10^{34}$ |
| $L_{sim} (\Delta \epsilon = 20\%)$            | $3.7 \times 10^{34}$ | $2.7 \times 10^{34}$ |

Simulation by R. Brinkmann including IP feedback tuning

- Effect can be reduced by decreasing bunch length but this increases beamstrahlung energy spread
- Smaller fractional effect for large emittance dilutions and smaller disruption – initial calcs. suggest smaller problem in NLC design


#### **Banana Effect (single bunch kink)**

• Plot from Daniel Schulte



### **Machine Protection Issues**

- Single bunches will likely damage any material at the end of the linac or in the beam delivery
  - Complicated turn-on process to prevent damage
  - Complicated MPS system with diagnostics on many components
    - Anything that can change from pulse-to-pulse
  - Some impact on operation not yet fully quantified
  - Problems are very similar for TESLA and NLC!



Damage from 13 pC/ $\mu$ m<sup>2</sup>

## **Reliability Issues**

- Essential to understand!
  - Significant limitation in SLC operation
    - Would take 3 ~ 4 times the length of each down time to recover luminosity!
- New LC are being designed to avoid known problems
  - Multiple (redundant) power supplies
  - Overhead in klystron / modulator populations
  - Redundant electrical / cooling systems
  - Big questions regarding TESLA single tunnel with accesses/10 days
    - radiation levels have only been checked at 17 MV/m (turned off 1 cavity)
    - Operation model based on 40,000 hr klystron lifetime -- only operated for ~2000 hrs at 25% power and 1 Hz
    - modulator cables; temp stability; low level rf electronics
- Must qualify reliability of all components, especially those in the tunnel!

### **Personal Opinion: XFEL**

- First thought of in '92 (C. Pelegrini and H. Winick)
  - Convergence of LC technology; rf guns; undulators; star wars
- No fundamental advantage of different technologies
  - TTF FEL and APS FEL
    LCLS and TESLA XFEL
- Great idea however do we/they really want a combined fac.?
  - Cost sharing is minimal (new sources; new compressors; only share 5% of linac) and operating expertise can be transferred!
  - Experimental requirements very different: users need few hours of beam time
  - Real operational issues in sharing linacs and tunnels
- Build user facilities at radiation sources: SSRL at SLAC, APS at Argonne, HASYLAB at DESY

#### **Summary**

- TESLA rf system is making great progress
  - Rf system for 500 GeV cms is close to being ready
    - Need to test final prototypes for modules, HOM damping, couplers, and klystrons
    - Need to gain operational time at nominal gradient 22~23 MV/m
  - Rf cavities for 800 GeV cms might be ready in 2004
- Luminosity issues are a larger concern!
  - Linac alignment tolerances are not attainable with proposed conventional systems
  - Damping ring and e+ source novel design with new dynamical issues
  - Beam-beam effects are significant and may force reduction in luminosity
  - The single tunnel design may severely constrain machine operation
- TESLA parameters developed for 500 GeV cms 800 GeV parameters have not been studied in detail