BNL-52627 CLNS 01/1729 FERMILAB-Pub-01/058-E LBNL-47813 SLAC-R-570 UCRL-ID-143810-DR May 2001

Linear Collider Physics

Resource Book for Snowmass 2001

American Linear Collider Working Group

Interaction Region Issues

Both TESLA and NLC base designs allow for 2 Interaction Regions

What are the issues?

The Physics Program - Could the physics goals be achieved by 1 IR?

Luminosity Sharing - Time sharing and/or luminosity enhancements?

International Participation - need for international financing of a world LC - could you envision an LC without international financing of an LC Detector?

Competition – wouldn't the scientific honesty and rigor be enhanced by competition of two detectors? Wouldn't the pace and efficiencies of construction be enhanced ? Wouldn't competition broaden the user involvement?

PHYSICS Topics

Topic	ENERGY
	(LEIR)
Giga – Z	92
W+- threshold	160
Higgs	220-340
tt-bar threshold	350
SUSY states	500 - 1 TeV
	(HEIR)
ZHH (Higgs self coupling)	> 500
vv-bar H (WWH coupling)	> 500
$e^{-}e^{-}$ and/or $\gamma \gamma$	> 500 (staged?)

TESLA Philosophy Versus NLC Philosophy

TESLA:

2nd IR *IF* funding for BEAMLINE plus IR Hall plus DETECTOR is available time sharing of pulses (2 ¹/₂ Hz)
Both IRs have full/equal capabilities and luminosity
Possibility for e⁻e⁻ and γ γ options

NLC:

Both IRs in baseline Energy capabilities different – LEIR and HEIR Potentially two distinct physics programs Potentially different luminosities Potentially increased luminosity (180 Hz running?)

Figure 1.2.1: Sketch of the overall layout of TESLA.

Figure 7.2.3: Geometry of the TESLA BDS, including the second IR.

Parameter	Small Detector	Large Detector
Detector footprint	$12 \times 11 \text{ m}$	20×20 m
Pit length	40 m	$62 \mathrm{m}$
Pit width	$20 \mathrm{m}$	30 m
Pit depth below beamline	$5 \mathrm{m}$	$7 \mathrm{m}$
Door height	$10 \mathrm{~m}$	$13 \mathrm{~m}$
Door width	$10 \mathrm{~m}$	$13 \mathrm{~m}$
Barrel weight	$2000 \mathrm{MT}$	$7300 \mathrm{MT}$
Door weight	$500 \mathrm{MT}$	$1900 \mathrm{MT}$
Total weight	$3100 \mathrm{MT}$	$11100 \mathrm{MT}$

Table 11.1: The Baseline Interaction Region Parameters

