

The Photon Collider at NLC

Jeff Gronberg/LLNL April 24, 2001

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

- Review the basic principles behind photon production through Compton back-scattering.
- Discuss the engineering required to actually realize a photon collider.
 - Lasers
 - Optics
 - Interaction Region design

Basic components exist (laser, optics, IR design) Complete engineering design for Snowmass

Compton back-scattering

- Two body process
 - Correlation between outgoing photon angle and energy
 - Maximum energy when the photon is co-linear with the incoming electron

- Proposed by Ginzburg et al. (1982) for producing a photon collider
 - Collide a high power laser pulse with an electron beam to produce a high energy photon beam

Gamma-Gamma collisions

- Since high energy photons are co-linear with the incoming electron direction they focus to the same spot.
 - Lasers are powerful enough to convert most of the incoming electrons
 - High energy $\gamma\gamma$ luminosity is large
- Low energy photons and electrons also travel to the IP and produce a tail of low energy interactions.
- The beam beam interaction at the IP
 - Produces additional low energy beamstrahlung photons
 - Deflects the low energy spent electrons.

Interaction Point

Lasers requirements

- Laser pulses of
 - 1 Joule, 1.8 ps FWHM, 1 micron wavelength
- One for each electron bunch
 - 95 bunches / train x 120 Hz = 11400 pulses / second
 - Total laser power 10kW
 - 2.8 ns between bunches

- Requires:
 - High peak power (1 TeraWatt)
 - High Average power (10 kW)
 - Correct pulse format (95 pulses @ 2.8 ns spacing x 120 Hz)

Chirped pulse amplification allows high peak power picosecond pulses

70-60-0895-1899B

Diode pumping enables high average power Matching diode output wavelength to the laser amplifier pump band gives 25% power efficiency

4 pairs of diode arrays like these are required for Mercury \Rightarrow 644 kW

Pulse Format drives the Laser architecture

NLC bunch format

ZDR 1996

100 small lasers 1 J, 100 Hz ns switches to spatially and temporally Combine sub-pulses to macro-pulse

New Mercury option

12 larger lasers 100 J, 10 Hz Simple 10 Hz spatial combiner Break macro-pulse into sub-pulses

The Mercury laser will utilize three key technologies: gas cooling, diodes, and Yb:S-FAP crystals

Wide band amplifier allows polychromatic components of the pulses to be linearly to amplified. Subsequent re-compression gives short, separated pulses.

70-00-0800-6274

Appropriate spectral sculpting of the input pulse can lead to a linearly chirped gaussian output pulse (2 psec stretched output pulse case)

We are developing diode-pump solid state lasers as the nextgeneration fusion driver - Mercury will deliver 100 J at 10 Hz with 10% efficiency.

Yb:S-FAP crystals

Diode array capable of 160 kW

Mercury Lab

Pump Delivery

Diode requirements

Tesla bunch structure

	$\tau_{\rm B}$ ns	N _B	f Hz	$\sigma_{z} \mu m$	N 10 ¹⁰
TESLA-500	337	2820	5	300	2.0
NLC-500H	2.8/1.4	95/190	120	110	1.5/0.75

Tesla bunch structure is very different Major impact on Laser Architecture

- 1 millisecond is the laser amplifier upper state lifetime
 - Tesla must produce 30 times as many pulses on that timescale
- Since most laser power goes unused they are investigating
 - Multipass optical cavities
 - Ring lasers
- No baseline design in TDR

Optics and IR

- Optics requirements
 - Keep accumulated wave-front aberrations small
 - Prevent damage to optics from high power pulses
 - All regimes; ps, 300 ns, continuous
 - Prevent accumulation of non-linear phase aberration
 - Vacuum transport lines
 - Reflective optics transmissive optics only where necessary
- IR/Optics integration
 - Optics must be mounted in the IR
 - All hardware required to accomplish this must not:
 - Interfere with the accelerator
 - Degrade the performance of the detector
 - Generate backgrounds

Focusing mirrors - tight fit

LCD - Large with new mirror placement

- Essentially identical to e⁺e⁻ IR
- 30 mRad x-angle
- Extraction line ± 10 mRadian
- New mirror design 6 cm thick, with central hole 7 cm radius.
 - Remove all material from the flight path of the backgrounds

Compton Backscattering

- After backscattering the bunch contains both high energy photons and electrons.
- Angular spread photons ~ 1/γ
 - Micro radian at 250 GeV
- 63% Conversion efficiency
- Low energy tail due to electrons scattering more than once.

Disrupted Beam

- High Energy photons means low energy electrons.
 - Large beam-beam deflection
 - Large rotation in solenoid field
- Requires extraction line aperture +/- 10 milliradians
- Leads to increase in crossing angle to avoid conflict between final quadrupole and extraction line.
- Zero field extraction line, no optics.

IR Background changes from e⁺e⁻

- Increased disruption of beam, Larger extraction line
 - ± 10 milliradians extraction line
 - Crossing angle increased to 30 milliradians to avoid conflict with incoming quad. Should be reduced to minimum when final design of quad is known.
 - First two layers of SVX now have line of sight to the beam dump
 - Fluence of neutrons 10^{11} /cm²/year
 - Need rad hard SVX
- Higher rate of $\gamma\gamma \rightarrow qq$, minijets
 - Currently evaluating in pythia

Accelerator differences

- None needed Some desired
 - Rounder beams
 - Relaxes requirements on beam stabilization
 - Increases luminosity by factor 2
 - More bunch charge, fewer bunches
 - Most laser power unused no cost for increased bunch charge
 - Fewer bunches, more time between bunches
 - Laser architecture easier
 - Halving the number of bunches and doubling the bunch charge increases luminosity by factor 2
 - − e⁻e⁻ running
 - Electrons are easier to polarize
 - Reduce e⁺e⁻ physics backgrounds
 - Reduce beamstrahlung photons

New Final Focus

- Maximally compatible with e+e- running.
- One new quadrupole after the big bend.
- Spot size 15nm x 60 nm.
- Luminosity increase of a factor ~2.

Increase bunch charge

- Lasers prefer bunch spacing of 2.8 ns
 - Current 190 bunch 1.4 ns machine parameter sets are not optimal
- Tor Raubenheimer provides optimized machine parameters for $\gamma\gamma$
 - 95 bunches, 2.8 ns spacing
 - All other parameters as per NLC-A
 - Twice the bunch charge

In the high energy peak the $\gamma\gamma$ luminosity is now ~4 times higher than for the standard machine parameters

e⁻e⁻ running

- Easy (sort of)
 - Changeover requires rotating all quads in one arm of the linac
 - Order 1 month required
 - Polarized electron production needed in the positron injection complex with positron target bypass
- The base e⁻e⁻ luminosity is down a factor of 3 from the e⁺e⁻ luminosity. The beam beam attraction become repulsion.
 - Beam-beam interaction has no effect of high energy $\gamma\gamma$ peak
 - Improved polarization increases luminosity in the high energy $\gamma\gamma$ peak
 - Most ee backgrounds reduced by a factor 3

Realistic luminosity spectrum

- For 120 GeV Higgs on-peak running
- Polarization control enhances spin-0 and suppresses spin-2
 - Higgs is spin-0
 - Dominant, $\gamma\gamma \rightarrow bb$, background is spin-2
 - $\gamma\gamma \rightarrow$ bbg breaks the suppression
- Expect ~5400 Higgs / Year

Benchmark Higgs mode

- For new machine parameters and round beams
 - ~5000 Higgs / year
- Evaluating Higgs @
 - 120, 140, 160 GeV/c mass
 - bb, WW, ZZ modes
- UC Davis students evaluating
 - $-\gamma\gamma \rightarrow$ chargino pairs
 - $e\gamma \rightarrow Lightest SUSY partner$

Still plenty of physics modes to be evaluated

Ongoing Physics efforts

• Groundswell of interest in $\gamma\gamma$

Virtuous circle Theoretical work Line for the second se

- NWU and FNAL physicists have organized an international workshop on gamma-gamma interactions @ FNAL, March 14-17.
 - http://diablo.phys.nwu.edu/ggws/
- $\gamma\gamma$ parallel session @ JHU LC
 - http://hep.pha.jhu.edu/~morris/lcw
- *yy* session at Snowmass
 - http://snowmass2001.org

Missing Monte Carlo evaluations of physics mode analyses

Machine Optimization

- Basic design of photon collider exists.
- Detailed choices about machine configuration must be driven by physics analyses.
 - How important is electron polarization?
 - Must the low energy tail be suppressed?
 - Is it important to do Higgs runs on peak or can we take advantage of higher luminosity in the tail while running at max energy for SUSY / new physics searchs.

Conclusion

- Livermore is proceeding with a complete engineering design of a photon collider for Snowmass
- No show stoppers have been found for either the laser technology, optics or the IR integration

All enabling technologies exist Task is mainly engineering now