Impact of Tracker Design on Higgs Mass Resolution

Haijun Yang Keith Riles University of Michigan, Ann Arbor

Johns Hopkins University, Baltimore March 19-21, 2001

Monte Carlo Generator & Simulation

- MC Generator: PANDORA-PYTHIA V2.1 \implies Thanks to Michael E. Peskin, Masako Iwasaki.
- Analysis Platform: JAVA Analysis Studio V2.2.1 \implies Thanks to Tony Johnson, Mike Ronan.
- Fast MC with beam spot constraint \implies Thanks to Wolfgang Walkowiak.
- Full MC udscb comes from lcddata server
- Higgs mass resolution is based on Fast MC sample

•
$$e^+e^- \rightarrow ZH \rightarrow e^+e^-X(\gamma)$$

 $\sqrt{S} = 350, 500 \text{ GeV}$
 $M_H = 140 \text{ GeV}, \mathcal{L} = 500 f b^{-1}$

udscb Full MC at 500 GeV: 94315(L2),125039(S2)
udscb Fast MC at 500 GeV: 95668(L2),117676(S2)

• Fitting by Gaussian Distribution \implies Track resolution from full MC is worse than that from fast MC by factor of 2 ~ 4.

NLC at 350 GeV

• FAST MC: $ZH \rightarrow e^+e^-X(\gamma), M_H = 140 \text{ GeV}, \mathcal{L} = 500 f b^{-1}$

• Higgs mass distributions are changed while track resolutions $(\Delta 1/P_t, \Delta \theta, \Delta \phi)$ are scaled by factor Res(0.5, 1.0, 2.0, 4.0).

NLC at 350 GeV

• Raw recoil mass is fitted by single gaussian.
 ⇒ Higgs mass resolution is **insensitive** to track angular resolution.

• Raw recoil mass is fitted by single gaussian.
 ⇒ Higgs mass resolution is **insensitive** to track angular resolution.

 \implies Higgs mass resolution is **sensitive** to track momentum resolution.

- $\implies \text{Track momentum resolution:}$ Full MC is worse than Fast MC
- \implies Track momentum resolution in Fast MC: Large Detector is better than Small Detector
- \implies Higgs mass resolution:

insensitive to track angular resolutions

sensitive to track momentum resolution

Large Detector is better than Small Detector

NLC at 350 GeV is better than NLC at 500 GeV

 \star Conclusions are based on raw recoil mass rms spread with no kinematic fitting and no fitting of recoil mass distribution with backgrounds.